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MATHEMATICAL MODELLING IN SEDIMENTATION∗

RAIMUND BÜRGERA, JULIO CAREAGAB, STEFAN DIEHLB, VÍCTOR OSORESA,
AND LUIS MIGUEL VILLADAC

Abstract. Mathematical models that describe continuous thickening that may be employed for
simulation, design and control are usually given as nonlinear, time-dependent partial differential
equations that in one space dimension include strongly degenerate convection-diffusion-reaction
equations with discontinuous coefficients, and in two or more dimensions, coupled flow-transport
problems or first-order systems of balance equations arising from a shallow water approach. It is the
purpose of these notes, subdivided into three sections, to provide a survey of published results on
models of batch and continuous sedimentation of ideal and flocculated suspensions (Section 1), to
outline a recent theory of sedimentation of ideal suspensions in vessels with variable cross-sectional
area (in particular, cones) and its application to solving the problem of flux identification (Section 2),
and to review mathematical models of polydisperse sedimentation, including a recently formulated
multilayer shallow water formulation (Section 3).

1. Introduction

1.1. Mathematical engineering research in sedimentation. The topic of research on sedi-
mentation is motivated in Chile, and some other mining countries mostly located on the southern
hemisphere, by applications to mineral processing. In Chile, the most import economic activity is
mining of copper. The deposits typically contain 0.4% to 1% of copper. One important step of the
production of copper consists in the process of flotation, which roughly speaking means that finely
ground copper ores are mixed with water and a reagent that turns the metalliferous (valuable) par-
ticles hydrophobic while the (valueless) so-called gangue particles are hydrophilic. These properties
are exploited for the concentration of copper ores by flotation, that is, bubbles are injected into the
pulp to which the hydrophobic particles attach, and which eventually form a foam (froth) that is
skimmed and further processed for the concentration of copper. On the other hand, this process
produces a tremendous amount of tailings, that is a suspension of water with finely divided solid
(gangue) particles. Most copper mines are located in desert areas where water is a scarce resource,
and therefore one wishes to recover the largest amount possible of process water from the tail-
ings. This is done by specialized settling tanks, so-called thickeners, also called clarifier-thickeners
that are operated continuously (see Figure 1). Mathematical models are urgently required for the
description, simulation, design and control of such equipment.
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∗Lecture notes, Escuela de Primavera de Análisis Numérico (EPANUM 2019), Universidad de Concepción, 21–25

October 2019.
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CDepartamento de Matemática, Facultad de Ciencias, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile.

E-Mail: lvillada@ubiobio.cl.

1



2 R. BÜRGER, J. CAREAGA, S. DIEHL, V. OSORES, AND L.M. VILLADA

Figure 1. Thickeners at Escondida Copper Mine, Chile, whose purpose is the
recovery of water from tailings suspensions after flotation.

The research on mathematical model of sedimentation at Universidad de Concepción dates back
to the 1970s, and was initiated by Fernando Concha, now professor emeritus, and for a long time
academic at the Department of Metallurgical Engineering of the Faculty of Engineering at Uni-
versidad de Concepción. The involvement of mathematicians started in the early 1980s with the
collaboration of Maŕıa Cristina Bustos, then an academic at the Institute of Mathematics and
later at the Department of Mathematical Engineering of UdeC. She prepared her doctoral thesis,
finished in 1984, under the guidance of Wolfgang L. Wendland, then a professor of mathematics
at Technische Hochschule Darmstadt, Germany. W.L. Wendland assumed a new position at Uni-
versität Stuttgart, Germany, in 1986. The author joined his group as a doctoral student in 1993,
and finished his doctoral studies in 1996. During this time, and later on in various positions as a
research assistant, he started to collaborate also with the group at UdeC, and made contributions
of his own on the topic of models of sedimentation and related solid-fluid operations. Eventually
he joined UdeC as a Full Professor of the Department of Mathematical Engineering in 2005.

Very similar models describe the operation of secondary settling tanks (SSTs) that are part of
the so-called activated sludge process (ASP), which is the main process of operation of wastewater
treatment (WWT) plants (WWTPs; nowadays called water resource recovery facilities (WRRFs)).
Thus, research on models of sedimentation also covers these applications, and the author has
fruitfully collaborated in this direction with the group of professor Stefan Diehl at Lund University,
Sweden, and further collaborators.

It is the purpose of these to outline some recent contributions to the development, numerical solu-
tion, and calibration of models of sedimentation of ideal, flocculated, and polydisperse suspensions,
where the simplest case, namely that of batch settling of monodisperse suspension, is illustrated
in Figure 3. We are especially interested in models of batch and continuous sedimentation pro-
cesses of ideal, flocculated and polydisperse suspensions described by spatially one-dimensional,
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Figure 2. The Activated Sludge Process (ASP) in the application of wastewater
treatment/water resource recovery.

time-dependent partial differential equations (PDEs). The models are designed to capture basic
settling, consolidation, segregation and related processes under continuous feed and discharge oper-
ations. The mathematical interest in these models arises from non-standard “ingredients” (such as
degenerate diffusion, discontinuous coefficient functions, and hyperbolicity problems) that require
original mathematical research in analysis and numerical analysis. Results ensure, for example,
the well-posedness of mathematical models (that is, the existence, uniqueness, and continuous de-
pendence on data of a solution) and convergence of numerical schemes. Thus, over the years it
has been possible to construct a closed model framework suitable for upscaling laboratory data
in applications. Tools for the design, simulation and control of thickeners, clarifiers, and related
equipment have been developed. A more recent focus has been placed on parameter identification
problems and extensions to flotation and reactive settling.

1.2. Historical comments. To put the original research problem into the proper historical per-
spective of the engineering application, we first mention that extensive historical accounts are
provided in [1,2]. The exploitation of the difference in density between solid particles and fluid for
operations of washing ores can be traced back at least to the ancient Egyptians [3]. The use of
settling tanks, operated in a batch or semi-continuous manner, for processes that can now be iden-
tified as classification, clarification and thickening, was described in detail in Georgius Agricola’s
book De Re Metallica, first published in 1556 [1,2], see Figure 4. The most important technological
invention that would rationalize the settling process is the continuous thickener, introduced by
J.V.N. Dorr, a chemist, cyanide mill owner, consulting engineer and plant designer, in the early
twentieth century [4–6] (see Figure 5). A continuous thickener is essentially a cylindrical settling
tank into which the feed suspension to be separated is fed continuously, the sediment forming by
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φ = φ0

φ = 0

φ = φ0

φ = φmax
φ = φmax

φ = φmax

t = 0 0 < t < tcrit tcrit < t < tfinal t ≥ tfinal

Figure 3. Schematic of the sedimentation of a monodisperse suspension of small
solid particles in a viscous fluid: (left) suspension at initial solids volume fraction φ0,
(middle left) formation of a clear liquid (supernatant) region (φ = 0) and a densely
packed sediment (φ = φmax), showing a descending suspension-supernate interface
and a rising sediment-suspension interface, which meet at a critical time tcrit, (middle
right) compaction of the sediment after critical time tcrit, but before the system has
attained steady state, (right) final steady state with particles at rest and sediment
at maximum packing solids volume fraction φmax.

Figure 4. Sieving and washing operations illustrated by G. Agricola (De Re Metal-
lica, Freiberg, Saxony, 1556).

settling of particles is removed continuously, and the clear liquid produced is removed by a cir-
cumferential launder (see Figure 6). This design is widely used today in mineral processing and
in secondary settling tanks in wastewater treatment. The invention of the clarifier-thickener was
soon followed by efforts to mathematically model its operation. Coe and Clevenger recognized in
1916 [7] that understanding the dynamics of the batch settling process of a suspension at different
solids concentrations is fundamental for effective thickener design and control. Their drawing of a
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(a) (b) (c)

Seven GL&V/Dorr-Oliver 250ft. thickeners in a California refractory plant.

Equipment and Systems for Minerals Processing

Figure 5. (a) John Van Nostrand Dorr (1872–1962), inventor of the continuous
thickener, (b) illustration of the Dorr thickener (from [6]), (c) modern advertisement
of a Dorr-Oliver thickener.
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Figure 6. Schematic of a continuously operated clarifier-thickener.

succession of snapshots of a settling column shown in our Figure 7 has become the leading paradigm
of batch settling in a column.

1.3. Hindered settling. The starting point of the mathematical modelling of sedimentation is the
well-known Stokes formula [8], which states that the settling velocity of a sphere of size (diameter) d
and density ρs in an unbounded fluid of density ρf and viscosity µf is given by

v∞ =
(ρs − ρf)d

2

18µf
, (1.1)
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Figure 7. Settling experiments conducted by Coe and Clevenger [7].

where g denotes acceleration of gravity. The settling velocity of a particle in a concentrated suspen-
sion is, however, smaller than (1.1) due to the hindrance exerted by the presence of other particles.
This effect can be expressed as an increase in viscosity of the suspension. Explicit formulas de-
scribing the phenomenon of hindered settling are of the type

vsettl = v∞V(φ)

where the hindered settling factor V = V(φ) should satisfy V(0) = 1, V(φ2) < V(φ1) for for φ1 < φ2

and V(φmax) = 0. A formula for the dilute limit φ/φmax � 1 was derived more than a century ago
by A. Einstein [9], and in the 1940s,

vsettl = v∞V(φ)

was postulated for both dilute and concentrated suspensions (see, e.g., [10–12]).

1.4. Kinematic model of sedimentation. We now formulate a simple PDE-based model of
sedimentation based on the conservation of mass of the solid and liquid components. To this end
we consider the solids and the fluid as superimposed continuous phases associated with velocities vs

and vf . It is then assumed that the relative velocity (or slip velocity) vr := vs − vf is given by a
constitutive equation

vr = v∞V (φ),

where by kinematic side considerations (not detailed here) the hindered settling factor V (φ) is
related to V(φ) introduced above by V(φ) = (1− φ)V (φ). The algebraic form of V (φ) depends on
the material under consideration, and the generic expected behaviour is V (0) = 1, V (φmax = 1) = 0,
and V ′(φ) < 0.

To formulate the governing partial differential equation, we define the volume-average velocity

q = φvs + (1− φ)vf .

Then the one-dimensional conservation of mass partial differential equations for the solids phase,
occupying volume fraction φ, and the liquid phase, occupying volume fraction 1−φ, can be written
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Figure 8. Richardson-Zaki flux plot with n = nRZ = 5.

as

∂φ

∂t
+

∂

∂x
(φvs) = 0,

∂(1− φ)

∂t
+

∂

∂x

(
(1− φ)vf

)
= 0.

Observe that summing both balance equations we obtain ∂q/∂x = 0, that is, in the absence of
sources and sinks q is constant: for a closed column: q = 0; and otherwise q is controllable:
q = q(t). On the other hand, from the definitions of vr and q we derive that the solids flux φvs can
be written as

φvs = φq + φ(1− φ)vr.

Thus, we arrive at the final one-dimensional equation

∂φ

∂t
+

∂

∂x

(
φq + b(φ)

)
= 0,

where we define the so-called batch flux density function

b(φ) = φ(1− φ)vr = v∞φ(1− φ)V (φ).

A common semi-empirical expression is Richardson-Zaki formula [13]:

b(φ) =

{
v∞φ(1− φ)nRZ for 0 ≤ φ ≤ φmax,

0 otherwise.

See Figure 8 for an example with nRZ = 5.

1.5. Batch settling of an ideal suspension: some mathematical aspects. The previous
discussion elucidates that the proper mathematical frame of the kinematic theory of sedimentation
are first-order, nonlinear, scalar conservation laws. For instance, we may consider the case of batch
settling. According to the theory of first-order scalar conservation laws, solution values of the
first-order conservation law

∂φ

∂t
+
∂b(φ)

∂x
= 0, φ(x, 0) = φ0(x) (1.2)

propagate along straight lines with slope b′(φ) in an x versus t diagram. If b depends nonlinearly on
φ (as is the case in models of sedimentation), then the characteristics will in general intersect after
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Lz clear liquid S1

S2t 0 �0 �max �0
zL

b) MS-2: 0 �0 ��0a �max0 �fbk(�) S1 C1 sedimentS1C1 R1 S2 S3t1 tct�0
Lz clear liquid S1 C1 R1t 0 �0 ��0 �max �0

zL

) MS-3: 0 �0a �max0 �fbk(�) S1
sediment

S1 R1 S2 S3
t1 tct�0

Lz clear liquid S1 R1
t 0 �0 �max �0

zL

Figure 9. Construction of solutions to the problem of batch sedimentation of an
ideal suspensions, after [14].

finite time, and the solution becomes discontinuous. It is well known that a discontinuity between
two adjacent φ-values φ− and φ+ propagates at the following speed (Rankine-Hugoniot condition):

s =
b(φ−)− b(φ+)

φ− − φ+ = slope of chord
(
φ−, b(φ−)

)
,
(
φ+, b(φ+)

)
.

Such a discontinuity is, moreover, admissible (and is then called a shock) if the chord that joins
the points (φ−, b(φ−)) and (φ+, b(φ+)) in an b(φ) versus φ plot runs completely above the graph
of b(φ) if φ+ < φ− and completely below the graph of b(φ) if φ− < φ+ (this is a consequence of
Oleinik’s jump entropy condition.) The construction of solutions is illustrated in Figure 9. See [14]
for more details.

It was Kynch’s specific contribution [15] that he explicitly solved the governing equation (1.2)
under the assumption vs = v∞V (φ), for initially constant concentrations. In mathematical terms,
if the function b has support on the interval (0, φmax), then the settling of an initially homogeneous
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suspension of concentration φ0 ∈ (0, φmax) in a column of depth L can be described by the initial-
value problem (1.2) defined by the piecewise constant initial datum

φ(x, 0) =


0 for x < 0,

φ0 for 0 < x < L,

φmax for x > L

(1.3)

corresponding to two adjacent Riemann problems. Kynch [15] applied the method of characteristics
and resolving cases of intersection by discontinuities based on physical principles that agree with
theoretically motivated entropy conditions to be introduced much later. One piece of insight these
constructions could provide is the explanation why fairly dilute and concentrated suspensions would
settle with a sharp interface and a zone of continuous transition of concentration separating the
growing sediment from the bulk suspension; namely, the former situation gives rise to a kinematic
shock (in φ) and the latter to a rarefaction.

Kynch’s efforts were followed by systematic classifications of qualitatively different solutions
to (1.2), (1.3) [16, 17]. Based on work by Ballou [18], K.S. Cheng [19] and Liu [20] (see [21]),
Bustos and Concha [22] and Diehl [23] appropiately embedded these constructions into the theory
of entropy solutions of a scalar conservation law with non-convex flux. The interest Kynch’s theory
immediately caused in mineral processing, wastewater treatment (where it has become known
as the solids flux theory) and other applicative areas has been widely discussed in some reviews
(e.g., [1,24]). Clearly, to make this theory applicable to the settling of a given suspension one must
assume that the factor V = V (φ) is known. The reliable identification of this factor or equivalently,
of the function b = b(φ), from experimental data is a current research problem in itself [25–27], to
which we come back in Section 2.7.

The model is very similar to the well-known Lighthill-Whitham-Richards (LWR) model for traf-
fic flow. In fact, in textbooks on hyperbolic conservations, the LWR model forms the preferred
example, since the typical flux b(φ) = φ(1 − φ) arising in that model is convex and allows for
simpler construction of solutions, and the initial value problem (Riemann problem) for such an
equation is easier to handle, than for the problem (1.2), (1.3) with b non-convex. The construction
of solutions for the direct problem of (1.2) with piecewise constant initial data and constant φ0

(1.3) is in any case well understood and for decades has formed standard material for engineering
textbooks including [28,29].

Summarizing we can say that the kinematic sedimentation model provides a complete descrip-
tion of the settling process ranging from the dilute limit to high concentrations. In particular,
sharp interfaces such as the suspension-supernate interface, and under determined circumstances a
sharp sediment-suspension interface are produced. Certain “easy” cases, such as the settling of an
initially homogeneous suspension in a cylindrical vessel, allow the construction of an explicit solu-
tion in closed form since iso-concentration lines and characteristics coincide and are straight lines.
Additional effects, such as sediment compressibility and variability of particle sizes and densities,
are not considered.

1.6. Sedimentation with compression. In many applications in mineral processing, suspensions
of finely divided solids are flocculated, that is by addition of a chemical reagent (flocculant) and
applying suitable mechanisms such as shear, turbulence or mixing it is achieved that solid particles
form clusters (flocs) that contain an amount of water, and that settle faster than individual particles,
which accelerates the separation process. On the other hand, the flocs form a layer of compressible
sediment (so-called self-weight consolidation) that is characterized by curved iso-concentration lines:
in a height versus time plot, these lines emerge successively from the vessel bottom and eventually
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Figure 10. Numerical simulation of batch settling, corresponding to q = 0, φc =
0.1, φ0 = 0.07, and n = 5 [49].

become horizontal as an equilibrium state is achieved. Clearly, such curved iso-concentration lines
cannot be produced by solutions of the first-order conservation law (1.2). One way to describe the
effect of sediment compressibility consists in extending the PDE (1.2) by a term that accounts for
effective solid stress. The result of a rigorous derivation (see, e.g., [21,30,31]) can be formulated as
follows.

It is assumed that there is a material-dependent critical concentration or gel point φc at which
the solid particles (flocs) touch each other. If φ > φc, there is permanent contact between the flocs
and solid stresses can be transmitted. We characterize the suspension by two model functions, b(φ)
and the effective solid stress function σe(φ). The latter is assumed to satisfy

σ′e(φ) :=
dσe(φ)

dφ

{
= 0 for φ ≤ φc,

> 0 for φ > φc;

a common semi-empirical formula with parameters to be determined is

σe(φ) =

{
0 for φ ≤ φc,

σ0

(
(φ/φc)

k − 1
)

for φ > φc.

While for ideal suspensions (that do not exhibit sediment compressibility) we have

vr =
b(φ)

φ(1− φ)
,

we now obtain the solid-fluid relative velocity for sedimentation with compression as

vr =
b(φ)

φ(1− φ)

(
1 +

1

∆%gφ

∂σe(φ)

∂x︸ ︷︷ ︸
sediment compressibility term

)
.

Inserting this expression into the solids continuity equation

∂φ

∂t
+
∂(φvs)

∂x
= 0,

which in view of φvs ≡ φq + φ(1− φ)vr we may rewrite as

∂φ

∂t
+

∂

∂x

(
φq + φ(1− φ)vr

)
= 0 (in a closed vessel: q = 0),
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(a) (b)
continuous inflow of feed suspension (QF, uF)

continuous discharge of sediment (QR)

continuous overflow
of clarified liquid (QL)

xL

0

xR

xR

0

xL

x

QL = S · qL

QR = S · qR

uF

QF = QR −QL

clarification zone

thickening zone

sediment

level

Figure 11. (a) Schematic view of a clarifier-thickener (CT; technical details are
omitted), (b) one-dimensional idealized clarifier-thickener model.

we obtain

∂φ

∂t
+

∂

∂x

(
φq + b(φ)

)
=

∂

∂x

(
b(φ)σ′e(φ)

∆%gφ

∂φ

∂x

)
=

∂

∂x

(
a(φ)

∂φ

∂x

)
=
∂2A(φ)

∂x2 ,

(1.4)

where we define the diffusion coefficient

a(φ) :=
b(φ)σ′e(φ)

∆%gφ

{
= 0 for φ ≤ φc and φ ≥ φmax,

> 0 for φc < φ < φmax

and its primitive

A(φ) :=

∫ φ

0
a(s) ds.

The final equation (1.4) is strongly degenerate parabolic, since

a(φ)

{
= 0 for φ ≤ φc and φ ≥ φmax,

> 0 for φc < φ < φmax.

A numerical example is shown in Figure 10.

1.7. Clarifier-thickener models. To extend the theory of batch settling of ideal or flocculated
suspensions from batch settling (say, in a column) to continuous sedimentation in a clarifier-
thickener, a new clarifier-thickener model for flocculated suspensions was formulated in [32] as
a combination of the first-order models for ideal suspensions with the sedimentation-consolidation
theory, which contributes a strongly degenerate diffusion term. The result is an initial-value problem
of a strongly degenerate parabolic-hyperbolic partial differential equation, in which both the con-
vective flux and the diffusion term depend discontinuously on spatial position (height or depth) x.
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ompression regionu > u0 < u � uhindered settling regionlear liquid regionu = 0QL

QR xxR
0xLQF; uF

a)

disharge level
feed leveloverow leveloverow zonelari�ation zone

thikening zonedisharge zoneQL

QR xxR
0xLQF; uF

b) )
ompression regionu > u

lear liquid region, u = 0
QR xxR

0xL
ompression regionu > u0 < u � uhindered settling regionlear liquidregionu = 0 feedinletQF, uFQL QL

Figure 12. Modes of steady operation of a clarifier-thickener: (a) conventional
operation (sediment level below feed level), (b) high-rate operation (sediment level
above feed level), (c) variant of representation of conventional operation showing
the feed inlet.

Clearly, solutions of such an equation are in general discontinuous. To outline the model, we con-
sider a continuously operated axisymmetric clarifier-thickener vessel as drawn in Figure 11 (a). We
denote by x a downward-increasing depth variable, and we assume that all flow variables depend
on depth x and time t only. This means in particular that φ is assumed to be constant across each
horizontal cross-section. We subdivide the clarifier-thickener vessel into four different zones: the
thickening zone (0 < x < xR), which is usually the unique zone considered in conventional analyses
of continuous sedimentation, the clarification zone (xL < x < 0) located above, the underflow zone
(x > xR) and the overflow zone (x < xL). The vessel is continuously fed at depth x = 0, the
feed level, with fresh feed suspension at a volume feed rate QF(t) ≥ 0. The concentration of the
feed suspension is φF(t). The prescribed volume underflow rate, at which the thickened sediment
is removed from the unit, is QR(t) ≥ 0. Consequently, the overflow rate is QL(t) = QF(t)−QR(t),
where we assume that the two control functions QF(t) and QR(t) are chosen such that QL(t) > 0.
For a vessel with constant cross- sectional areaS, we define the velocities qL(t) := −QL(t)/S and
qR(t) := QR(t)/S.

Of course, the solids concentrations in the underflow and overflow cannot be prescribed, and
are part of the solution. Furthermore, we distinguish between the four above-mentioned zones
in the clarifier-thickener, which are a property of the equipment modeled, and the clear liquid,
hindered settling, and compression regions, in which a suspension at a given point of time has the
concentrations zero, 0 < φ ≤ φc, and φ > φc, respectively. Thus, the time-dependent location of
the regions is a property of a particular flow, that is, of the solution to the problem. Note that the
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) Fluxes near x = xR d) Fluxes near x = 0
u# uin ��f((xL�); u)= qL(u� uF)

f((xL+); u)= qL(u� uF) + b(u)

��f((0+); u)= qR(u� uF) + b(u)��f((xR�); u)= qR(u� uF) + b(u) ��f((0�); u)= qL(u� uF) + b(u)
uF

��f((xR+); u) = qR(u� uF)

p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp pp
p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
rp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

r pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

r pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp
pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp pp

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp

pp p
p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p

p pp
pp p

p
Figure 13. Plot of the function g(x, φ), after [45].

compression region is not confined to the thickening zone. These notions are stated to emphasize
that the model includes two different stationary modes of operation that are usually distinguished
in the applicative literature: conventional operation, as shown in Figures 12 (a) and (c), when the
sediment level (where φ = φc) is located below the feed level, and high-rate (also known as high-
capacity) operation, when the feed suspension is pumped into the sediment, as seen in Figure 12
(b). The second case can be produced by letting the sediment level (and thus the compression
region) rise into the clarification zone [33]. For sake of simplicity, we also neglect the action of
the rake provided in most industrial thickeners, which rotates above the gently sloped floor of the
thickener to move the concentrated sediment towards the discharge opening (references that handle
this point include [34–38]).

To formulate the mathematical model, we collect the previous considerations and utilize the one-
dimensional clarifier-thickener conceptual model of Figure 11 (b). It is assumed that the regions
x < xL and x > xR correspond to the advective transport of the overflow and the underflow
through pipes, in which the solid and the fluid move at the same velocity. Thus, vr is “switched
off” for x < xL and x > xR, which means that the levels x = xL and x = xR = 1 are transitions
to convective transport. The final mathematical model is then based on considering two of the
constants or time-dependent functions qR, qL, and qF := qR − qL, as well as the feed concentration
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φF, as control variables. The model is then defined by the partial differential equation

∂φ

∂t
+
∂g(x, φ)

∂x
=

∂

∂x

(
γ1(x)

∂A(φ)

∂x

)
, x ∈ R, t > 0, (1.5)

along with the initial condition

φ(x, 0) = φ0

(
x
)
, x ∈ R,

and the following definition of the convective flux:

g(x, φ) :=


qL(φ− φF) for x < xL,

qL(φ− φF) + b(φ) for xL < x < 0,

qR(φ− φF) + b(φ) for 0 < x < xR,

qR(φ− φF) for x > xR.

If we define the discontinuous parameters γ := (γ1, γ2), where

γ1(x) :=

{
1 for x ∈ (xL, xR),

0 otherwise,
, γ2(x) :=

{
qL < 0 for x < 0,

qR > 0 for x > 0,

and rewrite the flux density in the form

f
(
γ(w), φ

)
:= g(x, φ) = γ1(x)b(φ) + γ2(x)(φ− φF),

then (1.5) takes the form

∂φ

∂t
+

∂

∂x
f
(
γ(x), φ

)
=

∂

∂x

(
γ1(x)

∂A(φ)

∂x

)
. (1.6)

Figure 13 shows a plot of the function g(x, φ).
The equation (1.6) exhibits some non-standard properties. In particular, the flux function de-

pends discontinuously on x, and the equation changes its type between first-order hyperbolic and
second-order parabolic at the sediment level φ = φc. The equation is strongly degenerate parabolic.
Moreover, the degenerate diffusion term is “switched off” outside [xL, xR]. Another research prob-
lem is the characterization of admissible discontinuities of the concentration φ across the jumps
of γ. The current analysis (see [32,39]) is based on the assumption that A(φ) is continuous across
the discontinuities at x = xL, 0, xR. Uniqueness and convergence of a simple finite difference scheme
were shown in [32].

1.8. Steady states and numerical simulations. For practical purposes, two different kinds
of quantitative results related to the clarifier-thickener model are of interest, namely firstly the
description of stationary solutions that represent states of operation without any control actions,
and secondly, transient simulations of scenarios such as fill-up of the unit or the response of the
model to variations of the operating conditions.

The construction of steady states means seeking stationary solutions of (1.6). Roughly speaking,
one omits the time derivative ∂φ/∂t in that equation to obtain a second-order ordinary differential
equation for φ as a function of x. Integrating this equation once, and fixing a suitable boundary
condition, one obtains a first-order ordinary equation that can be integrated in x-direction to
eventually obtain φ(x). This procedure is, however, subject to a number of limitations such as
jump conditions across x = xL, 0, and xR, and entropy (admissibility) conditions that ensure that
the resulting stationary solutions are also entropy solutions according to the solution concept for
the transient case. One can prove [32] that the consequence of satisfaction of these conditions
is that the corresponding concentration profiles increase downwards (provided that the density of
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(a) (b)
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Figure 14. Clarifier-thickener model: (a) vessels used for steady-state calculations
and numerical simulation, (b) construction of steady states in the cylindrical vessel
of (a), taken from [32].

(a) (b)

Figure 15. Simulation of a continuous clarifier-thickener under stepwise changes
of φF: 0.086→ 0.08→ 0.088→ 0 (a) in vessel 1, (b) in vessel 2.

solid particles or flocs is larger than that of the liquid, which is the case in applications in mineral
processing). Figure 14 (b) illustrates steady states for the cylindrical vessels of Figure 14 (a) for
a given material, characterized by the model functions discussed above, and set values of the bulk
flows QF, QL and QR, but where the feed concentration φF is varied. One observes that stationary
profiles for relatively small values of φF can be accommodated in the thickening zone, while steady
states for larger values of φF are only feasible in high-rate (or high-capacity) mode of operation. For
values larger than about φF = 0.088 steady states (for the given values of the remaining parameters)
cannot be accommodated in the unit, or one observes loss of monotonicity in the appropriate sense,
which points at violation of the entropy condition.

In [32] a suitable numerical scheme for the numerical solution of the transient model was defined,
and its convergence was analyzed. A hands-on description of a variant of that scheme for a slightly
extended model of a secondary settling tank, with all necessary details, is provided in [40]. We
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A SST cross-sectional area
C particle concentrations

vector
e (index): effluent
f (index): feed
Q volume bulk flows
pL substrate percentages

vector
pX particle percentages

vector
RX particle reactions vector
RL substrate reactions

vector

R̃X sum of particulate
reactions

C substrate concentrations
vector

u (index): underflow
W concentration of water
δ Dirac delta function
γ one inside SST,

zero outside

Figure 16. (a) An ideal secondary settling tank (SST) with variables of the feed
inlet, effluent and underflow indexed with f, e and u, respectively [42]. The sludge
blanket (concentration discontinuity) separates the hindered settling and compres-
sion regions. (b) Subdivision into computational cells. (c) Nomenclature.

here present one pair of simulations in Figure 15. Figure 15 (a) corresponds to a simulation that
starts with an empty unit whose dimensions are those of the cylindrical one of Figure 14 (a). The
unit is fed with suspension at φF = 0.086. This corresponds to a steady state of high-capacity
mode of operation. The steady state is attained after t = 24, where for physically relevant values
of parameters and model functions (see [32]) time is measured in units of 106 seconds. Varying φF

in a stepwise fashion as indicated in the caption of Figure 15 produces transitions between several
steady states. In Figure 15 we display the corresponding solution for the vessel shown in Figure 14
(a) that has variable cross-sectional area. We observe that the same applied feed and bulk flows
lead to solutions with nonzero overflow solids concentrations.

1.9. Reactive settling. Models of continuously operated settling tanks form a topic for well-
posedness and numerical analysis even in one space dimension due to the spatially discontinuous
coefficients of the underlying strongly degenerate parabolic, nonlinear model PDE (1.6). Such a
model was recently extended [41, 42] to multi-component particles that react with several soluble
constituents of the liquid phase. This process of so-called “reactive settling” takes place in the
secondary settling tank (SST) within the Activated Sludge Process (ASP), see Figure 2. The
fundamental balance equations contain the mass percentages of the components of both phases.
The equations are reformulated in [42] as a system of nonlinear PDEs that can be solved by an
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explicit numerical difference scheme. The scheme itself is not described in this contribution since
space is limited. It combines a difference scheme for conservation laws with discontinuous flux,
similar to that of [32], with numerical percentage propagation for multi-component flows [43].

The main variables are explained in Figure 16. The unknowns are X, L, pX and pL as functions
of z and t. The solid and fluid densities, ρX and ρL, are assumed constant. The model keeps track
of kX particulate and kL liquid components (kL − 1 substrates and water), whose concentrations
are collected in vectors C and S along with W , or equivalently, percentage vectors pX and pL:

C = pXX =

 p
(1)
X
...

p
(kX)
X

X, pLL =

 p
(1)
L
...

p
(kL)
L

L =

(
S
W

)
=


S(1)

...

S(kL−1)

W

 ,

where p
(1)
X + · · ·+ p

(kX)
X = 1 and p

(1)
L + · · ·+ p

(kL)
L = 1. The governing system of equations can be

formulated as follows:

∂tX + ∂zFX = δ(z)
XfQf

A
+ γ(z)R̃X(X), FX := Xq + γ(z)

(
f(X)− ∂zD(X)

)
,

∂t(pXX) + ∂z(pXX) = δ(z)
pX,fXfQf

A
+ γ(z)RX ,

L = ρL(1−X/ρX),

∂t(p̄LL) + ∂z(p̄LL) = δ(z)
p̄L,fXfQf

A
+ γ(z)R̄L, FL := ρL

(
q − FX

ρX

)
,

p
(kL)
L = 1−

(
p

(1)
L + · · ·+ p

(kL−1)
L

)
(1.7)

for z ∈ R and t > 0, along with suitable initial conditions. The convective flux function FX contains
the spatially discontinuous bulk velocity q(z, t), the hindered-settling flux function f given by

f(φ) = φvhs(φ). (1.8)

and the sediment compressibility function

D(φ) =

∫ φ

0

ρXvhs(s)σ
′
e(s)

g(ρX − ρL)
ds, (1.9)

where ρX and ρL denote the constant solid and fluid mass densities and σ′e is the derivative of the
so-called effective solid stress function σe = σe(φ) that satisfies

σ′e(φ) =
dσe(φ)

dφ
=

{
= 0 for φ ≤ φc,

> 0 for φ > φc,

where φc denotes a critical concentration above which solid particles are assumed to form a porous
network capable of supporting solid stress. Moreover, p̄L = p̄L(z, t) is a vector of components of the
liquid phase formed by the first kL − 1 components of pL. The reaction term vectors are denoted
by RX and R̄L, and lastly R̃X is the sum of all components of the vector RX .

The model (1.7) may include a full biokinetic Activated Sludge Model (ASMx; see [44]) at every
depth z within RX and R̄L, and is based on the idea that hindered and compressive settling depend
on the total particulate concentration (flocculated biomass) X modelled by the first equation. The
particular formulation (1.7) has two advantages. Firstly, for a numerical method with explicit time
stepping such as the one advanced in [42], the new value of X is obtained by solving the first
equation in (1.7) only. Then pX is updated by the second equation of (1.7), etc. Secondly, this
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Figure 17. Piecewise constant functions Qf and Qu (feed and underflow volume
rates) and Xf (solids feed concentration) for the numerical example of reactive set-
tling (Figure 18).

formulation yields the invariant region property of the numerical scheme (see [42, Theorem 4.1]),
which states that the solution stays in

Ω̃ :=
{
U ∈ RkX+kL+2 : 0 ≤ pX ,pL ≤ 1, 0 ≤ X ≤ Xmax,

ρL − rXmax ≤ L ≤ ρL, p(1)
X + · · ·+ p

(kX)
X = 1, p

(1)
L + · · ·+ p

(kL)
L = 1

}
(vectors in inequalities should be interpreted component-wise), provided that the spatial meshwidth
and the time step satisfy a suitable CFL condition.

We have no proof that an exact solution of system (1.7) stays in Ω̃ if the initial datum does
since the well-posedness (existence and uniqueness) analysis of the model is not yet concluded,
and a suitable concept of a (discontinuous) exact solution is not yet established. However, it
is reasonable to expect that an exact solution of (1.7) should also assume values within Ω̃. To
support this conjecture, we mention first that the invariant region property proved in [42] holds
uniformly for approximate solutions, and therefore will hold for any limit to which the scheme
converges as discretization parameters tend to zero. This standard argument has been used for
related models in [32, 45, 46]. With the properties of the reaction term here, namely that R̃X = 0
if X = 0 or X = Xmax, the invariance property of the numerical scheme follows by a monotonicity
argument [42, Lemma 4.3]. The convergence of that scheme with a reaction term being a function
of X only (and utilizing that it is zero for X = 0 or X = Xmax) can be established by modifying
the proof in [32].

1.10. Numerical example. We present a numerical example. To specify the function f given by
(1.8), we utilize

vhs(φ) = v0/
(
1 + (φ/φ̄)r

)
, φ̄, r > 0,

where v0 > 0 is a constant that denotes the settling velocity of single particle in unbounded fluid,
and φmax denotes a maximum solids concentration (see [47] for references), with volume fraction φ
replaced by the equivalent local density X and the parameters X̄ = 3.87 kg m−3 and r = 3.58. The
function D that describes sediment compressibility is specified by (1.9), where we choose σe = 0
for X < Xc and σe(X) = α(X − Xc) for X > Xc with α = 0.2 m2 s−2 and Xc = 5 kg m−3. The
velocity q is defined in terms of the given bulk flows as

q(z, t) =
1

A
·
{
Qe(t) = Qf(t)−Qu(t) for z < 0,

Qu(t) for z > 0,
where A = 400 m2.
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Figure 18. Simulation of reactive settling (denitrification) in an SST under vari-
ations of Qu, Qf and Xf (see Figure 17). Constants are standard in ASM1
[44] or arise in a strongly reduced model [41]: b = 6.94× 10−6 s−1, fp = 0.2,
KNO3 = 5.0× 10−4 kg m−3, Xmax = 30 kg m−3, (the maximum solids concen-
tration), µmax = 5.56× 10−5 s−1, v0 = 1.76× 10−3 m s−1, ρX = 1050 kg m−3,
ρL = 998 kg m−3, g = 9.8 m s−2 (acceleration of gravity) and Y = 0.67 (yield factor).

We use a reduced biological model of denitrification, distinguishing kX = 2 particulate com-
ponents with concentrations XOHO (ordinary heterotrophic organisms) and XU (undegradable
organics), and kL = 4 liquid components, namely the substrates SNO3 (nitrate), SS (readily
biodegradable substrate) and SN2 (nitrogen), and water, such that pXX = C = (XOHO, XU)T and
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S = (SNO3 , SS, SN2)T. The reaction terms are then given by

RL = XOHO


−1− Y

2.86Y
µ(S)

(1− fp)b− 1

Y
µ(S)

1− Y
2.86Y

µ(S)

0

 ,

RX = XOHO

(
µ(S)− b
fpb

)
,

µ(S) := µmax
SNO3

KNO3 + SNO3

SS

KS + SS
,

where µ(S) is the so-called growth rate function. (Values of constants are given in the caption of
Figure 18.) The resulting summed reaction terms are

R̃X = (µ(S)− (1− fp)b)XOHO, R̃L =

(
(1− fp)b− µ(S)

Y

)
XOHO.

We choose the volumetric flows Qf and Qu and the feed concentration Xf as piecewise constant
functions of t (see Figure 17), and let pX,f and pL,f be constant.

The whole simulation is shown in Figure 18. The initial steady state is kept during two hours
of the simulation. There is a sludge blanket, i.e., a discontinuity from a low concentration up to
X = Xc. At t = 4 h, the step change of control functions causes a rapidly rising sludge blanket
that nearly reaches the top of the SST around t = 5.8 h, when the control variables are changed
again. The fast reactions imply that the soluble NO3 is quickly converted to N2 in regions where
the bacteria OHO are present, which is below the sludge blanket.

2. Settling in vessels with varying cross-sectional area

2.1. Motivation. As we discussed in the previous section, the sedimentation of small particles in
viscous fluid is a fundamental unit operation in mineral processing, wastewater treatment, medicine,
geophysics, volcanology, etc., and mathematical models are needed for the simulation, design and
control of processes and equipment. Thee focus is on macroscopic descriptions with unit-scale,
long-time phenomena, so we seek continuum descriptions of solid/liquid phases. As we have seen,
even in the simplest setting, common models lead to nonlinear time-dependent PDE. Their mathe-
matical and numerical analysis has stimulated original research. In this section, we emphasize that
mathematical models and numerical methods are accepted only if nonlinear coefficient functions
can be calibrated, that is, adjusted to real scenarios, which immediately poses the so-called inverse
problem (of parameter/function identification from real data).

Advanced models for clarifier-thickeners (also known as secondary settling tanks) for units with
a constant cross-sectional area A can be formulated as

∂φ

∂t
+

∂

∂x

(
Q(x)

A
φ+ γ(x)f(φ)

)
=

∂

∂x

(
γ(x)

∂D(φ)

∂x

)
+ δ(x)

QF

A
(φ− φF), x ∈ R, t > 0,

where Q(x) is the piecewise constant bulk flow, the discontinous parameter γ assumes the values
γ = 1 inside and γ = 0 outside the unit; and D(φ) is a strongly degenerating function that describes
sediment compressibility. Moreover, QF and φF are feed parameters. This model has been used in
a number of papers in mineral processing and sanitary engineering, see e.g. [32, 40,45,48–52].

In this section we are concerned with the problem of identifying the function f from settling
experiments, and advance the new idea that tests should be conducted in a vessel with varying
cross-sectional area, for instance in a cone, an equipment that is widely used in sanitary engineering.
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Figure 19. Examples of axisymmetric vessels described by (2.1) for several valued
of the parameters p and q.

(a) (b) (c)

.

1

Figure 20. (a), (b): full cone: p = 0, q = 1/2, known as Imhoff cone in WWT, (c)
Karl Imhoff (1876–1965): German civil engineer, author, and a pioneer of WWT;
Handbook of Urban Drainage, 1906–present, translated into 20 languages.

To this end, and summarizing results from [48,53,54], we first outline the construction of solutions
to the model problem of settling of an ideal suspension in a cone, and then describe how reading
off the trajectory of the suspension-supernate interface through experiments provides information
on the flux function f for a whole interval of φ-values, in contrast to the conventional batch test in
a column.

2.2. Model problem and new contribution. We consider the following model problem that
describes the settling of a suspension of an initially homogeneous suspension of volume fraction φ0
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Figure 21. Schematic of settling of a suspension in a cylinder (top) and in a cone
(bottom). In the conical case, the concentration φ beneath the suspension-supernate
interface gradually increases, so that the velocity of descent of that interface de-
creases, while in the cylindrical case that concentration and velocity are constant.
As a consequence, that velocity of descent depends on a whole interval of φ-values
and corresponding flux values f(φ). It is therefore possible to reconstruct the func-
tion φ 7→ f(φ) on a whole interval, which may be as large as (φ0, φmax], where φ0 is
the initial concentration, from a single batch test, while the cylindrical case permits
only to obtain one point (φ0, f(φ0)) in addition to (φmax, f(φmax)), so a separate
test has to be performed for each initial concentration [54,79].

in a vessel of normalized height one, where A(x) is the cross-sectional area at height x:

∂

∂t

(
A(x)φ

)
− ∂

∂x

(
A(x)f(φ)

)
= 0, 0 < x < 1, t > 0,

φ(x, 0) = φ0 for 0 < x < 1,

φ(0+, t) = φmax = 1,

φ(1−, t) = 0 for t > 0.

(IBVP)

Here the flux function f is assumed to be non-negative with f ∈ C2 such that f(0) = f(1) = 0, with
a single maximum at φM, and an inflection point φinfl ∈ (φM, 1], such that f ′′(φ) < 0 for φ < φinfl

and f ′′(φ) > 0 for φ > φinfl. The cross-sectional area A := A(x) is assumed to be invertible with
A′(x) ≥ 0. To be specific, we assume that there exist constants p ≥ 0 and q ≥ 0 with (p2 + q2 6= 0)
such that

A(x) =

(
p+ qx

p+ q

)1/q

for 0 ≤ x ≤ 1. (2.1)

Figure 19 shows some rotationally symmetric vessels for selected choices of p and q. Of particular
interest is the case p = 0, q = 1/2 that correponds to a full cone since a cone is a commonly used
equipment in wastewater treatment (the so-called “Imhoff cone”, see Figure 20).

The novelty of our contributions is as follows. In [53] we construct explicit entropy solutions
to (IBVP) by the method of characteristics, including numerical approximation of curved shock
trajectories. In contrast to the cylindrical case, characteristics and iso-conce f with one inflection
point, while the available previous solution of the problem by Anestis [55]: only applies to V (φ) =
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1−φ, that is f(φ) = φ(1−φ); this function does not have an inflection point. It turns out [53] that
there are three qualitatively different solutions, in dependence of φ0. The analysis predicts that the
propagation velocity of the suspension-supernate velocity is variable, and that the trajectory of this
curve is a height versus time plot reflects the portion of the curve φ 7→ f(φ) for the range of φ-values
adjacent to the curve. (This sharply contrasts with the cylindrical case in which this velocity is
constant.) Under determined circumstances, the trajectory of this curve can be converted into the
flux curve, which opens the way to a new method of flux identification if the suspension under
study, and for which the material specific curve φ 7→ f(φ) is sought, is allowed to settle in a cone,
see Figure 21.

2.3. Method of characteristics and jump condition. To elucidate the method of character-
istics as applied to the governing PDE in (IBVP), let us consider first the general quasilinear,
first-order PDE

a(x, t, u)
∂u

∂t
+ b(x, t, u)

∂u

∂x
= c(x, t, u), (x, t) ∈ Ω ⊂ R2. (2.2)

We assume that this equation is supplied with a curve of the form

Γ : ν 7→ (x0(ν), t0(ν), U0(ν)) ∈ R3, (2.3)

where ν belongs to a real interval. Then solving the initial-boundary value problem (2.2), (2.3)
amounts to finding a surface

S =
{(
x, t, u(x, t)

)∣∣(x, t) ∈ Ω
}
⊂ R3

with the properties that Γ ⊂ S and u is a solution of (2.2). The essence of the method of
characteristics to solve the problem is outlined e.g. in [56, 57]. Roughly speaking, the method
means that for each point (x0(ν), t0(ν), U0(ν)) ∈ Γ, one solves the following ordinary differential
equations (the so-called characteristic equations) for η ≥ η0: , where a = a(x(ν, η), t(ν, η), U(ν, η)),
etc.:

∂t

∂η
= a

(
x(ν, η), t(ν, η), U(ν, η)

)
, η > η0; t(ν, η0) = t0(ν),

∂x

∂η
= b
(
x(ν, η), t(ν, η), U(ν, η)

)
, η > η0; x(ν, η0) = x0(ν),

∂U

∂η
= c
(
x(ν, η), t(ν, η), U(ν, η)

)
, η > η0; U(ν, η0) = U0(ν).

(2.4)

Their solutions are the characteristics of (2.2). If we can obtain ν = ν(x, t) and η = η(x, t) from
the solution of (2.4), then the solution of (2.2), (2.3) is given by

Ω 3 (x, t) 7→ u = u(x, t) = U(ν(x, t), η(x, t)) ∈ R.

For the particular case of the initial value problem of a scalar conservation law

∂u

∂t
+
∂g(u)

∂x
= 0, x ∈ R, t > 0; u(x, 0) = u0(x), x ∈ R

we obtain

a ≡ 1, b ≡ g′(u), c ≡ 0; ν = x, η = t,

such that in smooth regions,

u(x, t) = u0

(
x− g′(u(x, t))t

)
,
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which means that the solution u is constant along straight characteristics

x(t) = x0 + (t− t0)g′
(
u(x0, t0)

)
.

Clearly, in the case of a nonlinear conservation law (g′ 6≡ 0) characteristics carrying values u− 6= u+

may intersect, even for smooth u0. This is handled by inserting a discontinuity that must travel at
the speed given by the so-called Rankine-Hugoniot condition (jump condition)

S(u−, u+) :=
g(u+)− g(u−)

u+ − u− .

A discontinuity is said to be admissible if S(u−, u+) ≤ S(u−, u) for all u between u− and u+.

2.4. Characteristics and entropy solutions for the model problem. We now turn to the
application of the method of characteristics to the model problem (IBVP). To this end, we rewrite
the partial differential equation in (IBVP) as

∂φ

∂t
− f ′(φ)

∂φ

∂x
=
A′(x)

A(x)
f(φ) ⇒ a ≡ 1, b = −f ′(φ), c =

A′(x)

A(x)
f(φ),

which means that we may choose t as a parameter along characteristics. Furthermore, assume
that an initial curve Γ : (x, t, φ) = (ξ, τ, ϕ) is given. Then x = X(t) and φ = Φ(t) satisfy the
characteristic equations{

X ′(t) = −f ′(Φ), t > τ ;

X(τ) = ξ,

Φ′(t) =
A′(X)

A(X)
f(Φ), t > τ ;

Φ(τ) = ϕ,

which means that A′ > 0 implies that Φ′ > 0 along characteristics (in other words, concentra-
tion increases along characteristics). For the particular case of A(x) given by (2.1), we get the
characteristic system

t− τ
p+ qx

= f(q)

∫ φ

ϕ

dΦ

f(Φ)1+q
,

f(φ)

f(ϕ)
=

(
p+ qξ

p+ qx

)1/q

. (2.5)

To elucidate the implications of these equations, let us focus on the initial datum (x, t, φ) = (ξ, 0, φ0).
Then (2.5) takes the form

ψ(x, t) :=
t

p+ qx
= f(φ)q

∫ φ

φ0

dΦ

f(Φ)1+q
=: Q(φ) (2.6)

This equation holds for small times, and describes the evolution of the concentration within the
suspension between the supernate-suspension interface and the interfaces propagating upward from
the bottom. To obtain φ at a given position from (2.6), written as ψ(x, t) = Q(φ), one must in
principle invert the function φ 7→ Q(φ) to obtain

φ(x, t) = Q−1
(
ψ(x, t)

)
. (2.7)

From this equation we immediately read off that wherever the solution is defined by (2.7), φ is
constant on the curves ψ = const.

For a (truncated) cone, we have q = 1/2, and the iso-ψ-curves (⇔ iso-φ-curves) are straight lines
intersecting at the vertex x = −p/q for t = 0. On the other hand,

Q(φ) = f(φ)1/2

∫ φ

φ0

dΦ

f(Φ)3/2
. (2.8)
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Figure 22. Construction of the entropy solution to the problem of settling of an
ideal suspension with the quadratic flux f(φ) = φ(1 − φ

φmax
), φmax = 0.66, with

initial concentration φ0 = 0.35, q = 1/2, p = 1/18, in a cone segment corresponding
to q = 1/2 and p = 1/18. Note that this construction is covered the theory by
Anestis [55].

This integral cannot be evaluated (let alone inverted) in closed form in general. However, for
f(φ) = φ(1− φ/φmax) this is possible, and we get

Q(φ) =

(
φ

(
1− φ

φmax

))1/2

 4
φ

φmax
− 2

(
φ− φ2

φmax

)1/2 −
4
φ0

φmax
− 2

(
φ0 −

φ2
0

φmax

)1/2
 .

In our works [53,54] we use integrals
∫ φ
φ0
. . . dΦ (cf. (2.8)), in contrast to [55] where the expressions

used are of the type.
∫ f
f0
. . . df̃ . Moreover we admit functions f with one inflection point, while

Anestis [55] presupposes that f is quadratic.
The solution construction is completed by utilizing the jump condition. We rewrite the corre-

sponding Rankine-Hugoniot condition as an ordinary differential equation that takes into account
that the concentrations adjacent to a discontinuity are in general variable, and therefore the corre-
sponding jump propagation speed is, in general, variable. Precisely, if φ+(t) and φ−(t) are solution
values adjacent to a discontinuity t 7→ xd(t), then

−x′d = S(φ−, φ+) :=


f(φ+)− f(φ−)

φ+ − φ− if φ+ 6= φ−,

f ′(φ) if φ+ = φ− =: φ.

(RH)

Moreover, the jumo must satisfy the jump entropy condition (admissibility condition)

S
(
u, φ−

)
≥ S

(
φ+, φ−

)
for all u between φ+ and φ−. (EJ)

Definition 2.1 (Entropy solution of (IBVP)). A function φ = φ(x, t) is an entropy solution
of (IBVP) if φ is C1 everywhere with the exception of a finite number of curves xd(t) ∈ C1 of
discontinuities. At each jump, φ± := φ(xd(t)±, t) satisfy (RH) and (EJ).
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Figure 23. Cases of an (a) low, (b) intermediate and (c) high initial concentra-
tion φ0 for the construction of the entropy solution to (IBVP), for a given flux
density function f with inflection point φinfl [53].
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Figure 24. Solution to the problem of settling of an ideal suspension with flux
parameter rV = 4, initial concentration φ0 = 0.04 (Case L), in a cone segment
corresponding to q = 1/2 and p = 1/18. (a) Characteristics and discontinuities in
the x versus t plane, (b) solution φ = φ(x, t), (c) comparison of the constructed
solution with a result produced by the Godunov scheme [53,54].

For the case f(φ) = φ(1− φ/φmax) we display in Figure 22 a sample construction of an entropy
solution. Furthermore, we comment that the entropy solutions constructed here are also the unique
entropy solns in the sense of Kružkov-type [58] entropy inequalities [57] that are defined by a
particular entropy integral inequality On the other hand, monotone conservative difference schemes
for scalar conservation laws (these are one-dimensional finite volume schemes, such as the Godunov
scheme) converge to a Kružkov-type entropy solution [59] as discretization is refined. Thus we may
verify the correctness of a solution construction by a numerical simulation, and use constructed
solutions as reference solutions for efficient numerical solvers.

2.5. Entropy solutions for p > 0. In what follows, we focus on the case of a cone segment
(q = 1/2) and assume first that p > 0, that is we assume that the cone is cut. The function f is
assumed to have one inflection point φinfl. For the solution construction we define [18]

φ∗ := sup
{
u > φ : S(φ, u) ≤ S(φ, v) ∀v ∈ (φ, u]

}
for φ ∈ [0, φinfl],

φ∗∗ := inf
{
u < φ : u∗ = φ

}
for φ ∈ [φinfl, φmax].

The central result from [53] can then be stated as follows. There are three differently structured
solutions corresponding to the respective cas of a low (L), medium (M), and high (H) value of φ0,
which are addressed in Figure 23.
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Figure 25. Solution to the problem of settling of an ideal suspension with flux
parameter rV = 4, initial concentration φ0 = 0.1 (Case L), in a cone segment
corresponding to q = 1/2 and p = 1/3. (a) Characteristics and discontinuities in
the x versus t plane, (b) solution φ = φ(x, t) [53,54].
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Figure 26. Solution to the problem of settling of an ideal suspension with flux
parameter rV = 5, initial concentration φ0 = 0.12 (Case M), in a cone segment
corresponding to q = 1/2 and p = 1/6. (a) Characteristics and discontinuities in
the x versus t plane, (b) solution φ = φ(x, t) [53,54].

The solutions are illustrated in Figures 24 to 27 [53, 54]. In each case an upper discontinuity
x = h(t) is defined for 0 ≤ t ≤ t3, where t3 is the time at which the solution becomes stationary,
and in Cases L and M a lower discontinuity x = b(t) emerges from x = 0 at t = t1 > 0, and may
cease to exist at a time t2 or merge with h(t) at t = t2.5. Regions I, IIa, etc. (denoted RI, RIIa,
etc.) contain qualitatively different smooth solutions.



28 R. BÜRGER, J. CAREAGA, S. DIEHL, V. OSORES, AND L.M. VILLADA

(a) (b)
.

x

t

1

φ0

0

III

IIb

I

x = ℓ(t)

x = h(t)

φmax

φ = 0

t2.5 t3

1

0

5

10

0

0.5

1

0

0.5

1

x
t

φ
(x
,
t)

Figure 27. Solution to the problem of settling of an ideal suspension with flux
parameter rV = 4.7, initial concentration φ0 = 0.43 (Case H), in a cone segment
corresponding to q = 1/2 and p = 9.5. (a) Characteristics and discontinuities in the
x versus t plane, (b) solution φ = φ(x, t) [53,54].

The construction of the solution of a specific model case requires numerical methods to integrate
the ordinary differential equations that define characteristics and curved shock trajectories. Never-
theless, it has been possible to obtain generic results on solution structure, and in particular on the
conveexity of certain trajectories, that are summarized and illustrated in the following theorem.

Theorem 2.1 (Main theorem for p, q > 0 or p > 0 and q → 0+). The entropy solution φ = φ(x, t) of
(IBVP) is piecewise smooth and has a decreasing shock h(t), which is strictly convex for 0 < t < t3.
Moreover:

(i)

A discontinuity b(t) rises from x = 0 if and only if
0 < φ0 < φinfl ( Cases L and M). It is a shock for
0 ≤ t < t1, a contact for t1 ≤ t < t2, and strictly
convex for 0 ≤ t < t2. Here h and b are smooth,
except if t2 = t2.5 (i.e., h and b intersect); then
h′ jumps at t = t2.5. If t2 < t2.5, then b(t) dies at
t = t2.

Case L Case M

(ii)
∂φ/∂t > 0 and ∂φ/∂x < 0 (weakly) except for φ = 0 for x > h(t) and φ = φmax in
RIII; and if q = 0, then ∂φ/∂t > 0 and ∂φ/∂x = 0 in RI.

(iii) In RI, φ(x, t) = Q−1(ψ(x, t)).
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(iv)

RIIa = ∅ if φinfl ≤ φ0 < φmax ( Case H)
or if P (φinfl) ≤ 0 and φG < φ0 <
φinfl. Otherwise, φ > φinfl in RIIa, and
strictly concave characteristics emanate
tangentially from b(t) for t1 ≤ t ≤ t2.

Case H Case M
RIIa = ∅ RIIa 6= ∅
RIIb 6= ∅ RIIb 6= ∅

(v)

RIIb = ∅ if φ0 ≤ φ∗∗max ( Case L).
Otherwise RIIb is filled with concave
characteristics emanating from (x, t) =
(0, 0) with initial values in (φ∗0, φmax) in
Case M, and in (φ0, φmax) in Case H.

Case L
RIIa 6= ∅
RIIb = ∅

2.6. Entropy solutions for p = 0 (full cone). Let us now consider the case of a full cone (p = 0).
Then the main theorem can be stated as follows (see [53,54] for a proof).

Theorem 2.2 (Entropy solution in a full cone (p = 0)).

(i)

Independently of φ0: If P (φinfl) > 0, then the so-
lution is continuous under 0 ≤ x ≤ h(t) without

bottom discontinuity b. (Here P (φ) := Q′(φ)
qf(φ)q−1 .)

Case M
x

t

1

φ0

0

III
I

x = ℓ(t)

x = h(t)

φmax

φ = 0

t3

(ii)

For φ0 ≤ φinfl: If P (φinfl) ≤ 0, then the soln has
both discontinuities, b is a straight line originat-
ing from the bottom, having the constant φ = φG

just above it, where G(φG) = 0.
(G(ϕ) := S(ϕ,ϕ−) + 1

qQ(ϕ) .)

Case L
x

t

1

φ0

0
III

IIa

I

x = b(t)

x = ℓ(t)

x = h(t)

φmax

φ = 0

In [54] we discuss which of the aforementioned scenarios can be utilized to solve the flux identi-
fication problem of Figure 21. Roughly speaking, we are interested in those scenarios for which the
interface h(t) is defined by a unique ordinary differential equation, so that observations of h(t) can
unequivocally be converted into a portion of φ 7→ f(φ). This is not the case, for instance, in the
scenario of Figure 26 since the definition of h(t) changes between t2.5 and t3. In fact, no identifica-
tion method for values of φh(t) (φ-values arising after endpoint t2.5 of RI) is feasible unless t2.5 = t3,
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Figure 28. Positions of t2.5 and t3 (right-pointing triangle and left-pointing trian-
gle, respectively) for q = 1/2 and several values of p > 0. The values coincide for
p = 0 (2) [54].

which happens as p → 0+, as is illustrated in Figure 28. The full curve φ 7→ f(φ), φ ∈ [φ0, φmax],
can be reconstructed only for p = 0.

2.7. Flux identification (inverse problem). In what follows, we assume that the settling of an
initially homogeneous suspension of initial concentration φ0 is described by model model (IBVP),
where A(x) is given by (2.1) for p, q ≥ 0; and we assume that 0 ≤ f ∈ C2; f(0) = f(1) = 0; f has
one maximum φ̂ with f ′(φ̂) = 0; and

f ′′(φ)

{
< 0 for φ < φinfl,

> 0 for φ > φinfl,
φinfl ∈ (φ̂, 1].

The inverse problem we wish to solve has been addressed in Figure 21. For ease of reference, we
formulate it as follows:

Given the interface trajectory [tstart, tend] 3 t 7→ h(t),

find the portion of φ 7→ f(φ) corresponding to the interval of adjacent φ-values.
(IP)

To solve it, we observe that (under suitable circumstances) the upper discontinuity h(t) and the
φ-values φh = φ(h−(t), t) immediately below it satisfy the following relations for 0 ≤ t ≤ t2.5: the
jump condition

f
(
φh(t)

)
= −h′(t)φh(t), (2.9)

which is the Rankine-Hugoniot condition of a jump separating the φ-values φh(t) and zero of a
discontinuity that moves at velocity h′(t), and the equation

ψ
(
h(t), t

)
= Q

(
φh(t)

)
, 0 ≤ t ≤ t2.5 (2.10)

that describes the concentration below h(t) (see (2.6) and (2.7)). Differentiating both equations
(2.9) and (2.10) with respect to t, we obtain

f ′
(
φh(t)

)
φ′h(t) = −h′′(t)φh(t)− h′(t)φ′h(t),

dψ

dt

(
h(t), t

)
=
(
qf ′
(
φh(t)

)
Q
(
φh(t)

)
+ 1
) φ′h(t)

f(φh(t))
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⇒ dψ

dt
(h, t) =

(
qψ(h, t)

(
−h′′φh

φ′h
− h′

)
+ 1

)
φ′h
−h′φh

⇔ φ′h
φh

=
1

qh′ψ(h, t)− 1

(
h′

d

dt

(
ψ(h, t)

)
− qψ(h, t)h′′

)
.

The last equation can be integrated, which leads to the following parametrized solution of (IP):

φh(t) =
φ0(p+ q)1+1/q

(p+ qh(t))1/q(p+ qη(t))
, η(t) := h(t)− th′(t).

f(φh(t)) =
φ0(p+ q)1+1/q

(p+ qh(t))1/q(p+ qη(t))
·
(
−h′(t)

)
.

Theorem 2.3 (Parametrized solution of the inverse problem). Assume p ≥ 0, q > 0, and that
φ0 and the upper shock wave x = h(t), 0 ≤ t < t2.5, are known. Then (IP) has the parametrized
solution (

φ
f(φ)

)
= φ0

(p+ q)1+1/q

(p+ qh(t))1/q(p+ qη(t))

(
1

−h′(t)

)
, 0 ≤ t ≤ t2.5,

where η(t) := h(t)− th′(t).
(2.11)

Theorem 2.4 (Explicit solution of the inverse problem). Assume that p ≥ 0 and q > 0, which
is the case of a (truncated or full) conical vessel, and that φ0 and the upper shock wave x = h(t),
0 ≤ t < t2.5, are known. Then (IP) has the following explicit solution:

f(φ) = −φh′
(
σ−1

(
φ0(p+ q)1/q+1

φ

))
, φ0 ≤ φ ≤ φh(t2.5),

where s(t) := (p+ qh(t))1/q+1 and σ(t) := s(t)− qt

q + 1
s′(t).

(EXF)

2.8. Application to discrete data. Theorems 2.3 and 2.4 allow us to define two alternative
methods for solving the flux identification from discrete (e.g., measured) data that approximate the
suspension-supernate interface in a cone. In both cases, we assume that the observed (“measured”)
interface trajectory is given by N data points(

t1, h(t1)
)
, . . . ,

(
tN , h(tN )

)
, (2.12)

i.e., h(tj) is the observed interface height at time tj , j = 1, . . . , N .
Method 1 is based on formulating (IP) as a least-squares problem for h. This means we approx-

imate the data points (2.12) by a piecewise cubic spline hspline that is defined as

hj(t) = ajt
3 + bjt

2 + cjt+ dj , j = 1, . . . , J,

with coefficients aj , bj , cj and dj to be determined for j = 1, . . . , J , where J is the number of
subintervals that is supposed to satisfy J ≤ N/4. According to Theorem 2.3, we impose hspline ∈ C2,
h′spline < 0, and h′′spline > 0. Then the task to determine the spline coefficients can be expressed as
the following constrained least squares (quadratic programming) problem:

minimize J(p) = (Qp− h)T(Qp− h)

subject to Rp = 0, Mp ≤ b, (QP1)

where p is the sought coefficient vector, Q is a particular block matrix whose rows contain properly
placed evaluations of (t3, t2, t, 1) at the measured times, the matrix R is related to constraints of
continuity, and M is related to the inequalities of decreasing and convexity behavior. The precise
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definitions are provided in [54, Appendix.3], and are similar to those of [60]. One can also prove
(see [60]) that (QP1) has a unique solution p, which define the cubic segments hj(t), j = 1, . . . , J .
Once these have been obtained, and noting that fr each cubic polynomial function

h′j(t) = 3ajt
2 + 2bjt+ cj , ηj(t) = −2ajt

3 − bjt+ dj ,

we use the parametrized solution formula (2.11) to obtain(
φj(t)

f(φj(t))

)
=

φ0(p+ q)1+1/q

(p+ qhj(t))1/q(p+ qηj(t))

(
1

−h′j(t)

)
, tj ≤ t ≤ tj+1,

where {tj} represent the ends of each interval of the fit. This formula is aasily implemented, but
has the disadvantage that no closed form for φ 7→ f(φ). Such a closed form is provided by the
explicit solution formula (EXF), which relies on a function t 7→ σ(t) that can be easily inverted.

The corresponding procedure defines Method 2, which is based on formulating (IP) as a least
squares problem as before but for s. Given data points (2.12), we now define the vector

s :=
(
(p+ qh(t1))1+1/q, . . . , (p+ qh(tN ))1+1/q

)T
,

and let sspline be a piecewise cubic approximating spline defined on the j-th subinterval by sj(t) =
ajt

3 + bjt
2 + cjt+ dj . We must now ensure that sspline ∈ C2, s′spline ≤ 0, and s′′spline > 0. (One can

show that s has these properties if and only if h has them.) The coefficients of sj(t) are obtained
by solving a constrained least squares (quadratic programming) problem

minimize J̃(p) = (Q̃p− s)T(Q̃p− s)
subject to R̃p = 0, M̃p ≤ b̃.

(QP2)

similar to (QP1). Once the coefficient vector p has been obtained by solving (QP2), one uses (EXF)

for σj and σ−1
j on each interval and division points φj = φp/σj(tj) from sj (here φp = φ0(p+q)1+1/q

is constant).
In Figure 29 we show as an example (from [54]) the flux identification from synthetic data

in a cone obtained by Method 2. On the other hand, in Figure 30 we display results of the
application of a variant of Method 1 to experimental data by White and Verdone [61]. That paper
reports experiments of settling of magnesium hydroxide Mg(OH)2 in water, involving the solids
density ρs = 2344.6 kg/m3 and initial concentrations of C0 = 50, 60 and 70 g/l that correspond
to φ0 = C0/ρs = 0.0213, 0.0256 and 0.0299. Here the parametric formula (2.11) leads to closer
estimations of cone data. We first non-dimensionalize the data (via v∞ = 10−4 m/s). and fit the
decreasing and strictly convex function

h̄(t) =
a

t+ b
+ ct+ d.

This yields the final flux

f̃(C) =
e1−C/ρs − 1

e− 1

v0C

1 + (C/C̄)n
(2.13)

with v0 = 3.5784 × 10−4m/s, C̄ = 49.570 g/l and n = 2.6227. Finally, some settling experiments
with activated sludge form the wastewater treatment plant in Västeras, Sweden (pop=118,000)
were conducted [62], see Figures 31 to 33.
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Figure 29. Flux identification from synthetic data in a cone obtained by Method 2
for a flux parameter rV = 5 and initial concentration φ0 = 0.1 [54].

3. On model of sedimentation of polydisperse suspensions

3.1. Introduction. We are interested in the process of sedimentation of small solid particles in
a viscous fluid under the influence of gravity, as is illustrated in Figure 3 for a monodisperse sus-
pension, that is, for which the solid particles have equal size and density. Standard references to
simple kinematic models that describe the settling of such a mixture include [14, 15, 24]. We now
focus on so-called polydisperse suspensions, in which the solid particles belong to a finite number
of classes (species) that have different sizes and densities. The different species segregate and form
areas of different composition. In many applications, a spatially one-dimensional description of
this process, with the space coordinate aligned with the body force (usually gravity) is sufficient.
The mathematical frame of continuum descriptions of that kind is given by first-order systems of
nonlinear conservation laws [30, 63, 64] whenever sediment compressibility is not in effect. Appli-
cations of spatially one-dimensional polydisperse sedimentation models are reviewed in [65]. They
include geophysics [66–69], chemical engineering [70, 71], mineral processing [72], medicine [73],
petroleum engineering [74], wastewater treatment [51, 75, 76], and other areas. The systems of
conservation laws arising in these applications are of arbitrary size (namely, of N scalar equations
for N unknowns, that is, the N volume fractions φ1, . . . , φN as a function of position x and time t
if we distinguish N solid particle species), but their fluxes are constructed in a systematic way. In
some important cases it is the possible to prove that the resulting system is strictly hyperbolic for
equal-density particles [63,77]. The flux Jacobian does not admit a closed-form eigenstructure, but
spectral schemes can still be implemented [78].
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Figure 30. Application of a variant of Method 1 to experimental data by White
and Verdone [61], see [54]: (a) experimental data of sedimentation of Mg(OH)2

in water in a conical and cylindrical vessel, (b) fitted h-curves to cone data, (c)

identified portions of flux function for each data set and fitted flux function f̃(C)

(see (2.13)), (d), (e), (f) fimulated batch tests in cylindrical vessel with f̃(C) and
cylinder data points from (a).

For the convective flow of a particulate suspension (e.g., in rivers and estuaries), that is for the
description of vertical sedimentation superposed with a horizonal flow, two- or three-dimensional
models are needes. These are computationally expensive since additional equations of motion
need to be solved. However, certain simplification is possible for suspended sediment transport in
shallow regimes, which can be described by a Saint-Venant or shallow water model combined with
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Figure 31. Settling experiments with activated sludge form the wastewater treat-
ment plant in Västeras, Sweden (pop=118,000) [62].
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Figure 32. Settling experiments with activated sludge form the wastewater treat-
ment plant in Västeras, Sweden (pop=118,000) [62].

passive transport equations for the different species. We herein consider a related model, namely a
multilayer shallow water model for polydisperse sedimentation.

3.2. Model of polydisperse sedimentation. Let us first consider a multi-dimensional setup,
where x denotes spatial position. It is assumed that the polydisperse suspensions consists of
spherical solid particles that belong to N species of sizes d1 ≥ · · · ≥ dN and densities ρ1, . . . , ρN
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Figure 33. Settling experiments with activated sludge form the wastewater treat-
ment plant in Västeras, Sweden (pop=118,000) [62].

with the corresponding volume fractions φi = φi(x, t), i = 1, . . . , N . Moreover, we define the total
solids volume fraction φ := φ1+· · ·+φN , where it is usually assumed that 0 ≤ φ ≤ φmax, where φmax

is a maximum packing density. This description presupposes that the particle sizes are relatively
small, at least with respect to the diameter of the settling vessel, so that a continuum description
is adequate but on the other hand colloidal effects are unimportant. Moreover, it is assumed that
the fluid has density ρf and viscosity µf . If g denotes the acceleration of gravity, then the derived
parameters used for the model formulation are

µ = − gd2
1

18µf
, δj =

d2
j

d2
1

, ρ̄j = ρj − ρf , ρ̄ =

 ρ̄1...
ρ̄N

 , δ =


δ1 = 1
δ2...
δN

 , Φ =

φ1...
φN

 .

To formulate the balance equations in multiple dimensions, let us assume that j = 0 corresponds
to the fluid and j = 1, . . . , N to the solid phases. We then obtain

∂tφj +∇ · (φjvj) = 0, j = 0, . . . , N, (3.1)

∇ · q = 0, (3.2)

ρj
(
∂t(φjvj) +∇ · (φjvj ⊗ vj)

)
= −ρjφjgez − φj∇p, j = 1, . . . , N, (3.3)
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where vj is the phase velocity of phase j (j = 0, 1, . . . , N), ez is the upward-pointing unit vector,
and p is the pressure. The solids phase velocities are given by

vj = q + vMLB
j (Φ)ez, j = 1, . . . , N,

where vMLB
j is the hindered settling function corresponding to the model introduced independently

by Masliyah [80] and Lockett and Bassoon [81] (“MLB model”), namely

vMLB
j (Φ) = µV (φ)

[
δj(ρ̄j − ρ̄TΦ)−

N∑
l=1

δlφl(ρ̄l − ρ̄TΦ)

]
, (3.4)

where V is a given function, sometimes called “hindered settling factor”, that is assumed to satisfy

V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0.

Finally, we remark that if the phase velocity vj has a horizontal component uj and a vertical
component $j , j = 0, . . . , N , then we assume that u0 = u1 = · · · = uN =: u.

If the particle species have equal density ρs (and differ in size only), then (3.4) reduces to

vMLB
j = µV (φ)(1− φ)(ρs − ρf)[δj − δTΦ]. (3.5)

Furthermore, in one space dimension, (3.2) implies that q = q is constant, with q = 0 for batch
settling. Thus, for the description of settling in a column of height L we only need to solve the
zero-flux initial-boundary value problem

∂tΦ + ∂xf(Φ) = 0, f(Φ) = (fj(Φ))Nj=1, fj(Φ) = φjvj(Φ),

Φ(x, 0) = Φ0(x), 0 ≤ x ≤ L; f(Φ)|x=0 = f(Φ)|x=L = 0.
(BSM)

This is a first-order nonlinear system of conservation laws whose solutions exhibit kinematic shocks
(concentration discontinuities), in agreement with experimental evidence [82]. This model is dis-
cussed in Section 3.3.

On the other hand, if we still consider the one-dimensional case but assume that the sediment
is compressible, then the governing model can be written as

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
, (DCM)

Φ(x, 0) = Φ0(x), 0 ≤ x ≤ L; f(Φ)−B(Φ)∂xΦ|x=0,L = 0,

where the term ∂x(B(Φ)∂xΦ) describes a diffusive correction (DC) of the original kinematic model
(see [30,84,85]). The diffusion matrix B(Φ) = (βij(Φ))i,j=1,...,N has the structure

βij(Φ) = γij(Φ)σe(φ) + αij(Φ)σ′e(φ)

with certain coefficient functions γij and αij(Φ) (whose precise algebraic definition is unimportant
here), and where σe denotes the so-called effective solid stress function that is has the generic
property

σe(φ), σ′e(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
σ′e(φ) jumps at φc, (3.6)

corresponding to the assumption that effective solid stress can only be transmitted when the parti-
cles are in permanent contact, which in turn is assumed to occur when the total volume fraction φ
exceeds a critical value φc, sometimes called “gel point”. Clearly, under the assumption (3.6), the
partial differential equation (PDE) in (DCM) is strongly degenerate. In fact, one can show [30] that
the PDE of (DCM) is parabolic wherever σe(φ) is active. This model is discussed in Section 3.7.
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Finally, we consider an alternative formulation based on mass averaging. We define

ρ := ρ(Φ) := ρ0φ0 + ρ1φ1 + · · ·+ ρNφN .

Then the mass average velocity of the mixture

v := (u, v, w)T :=
1

ρ

N∑
m=0

ρmφmvm =
1

ρ

[(
ρ−

N∑
j=1

ρjφj

)
v0 +

N∑
k=1

ρkφkvk

]
satisfies the global mass balance ∂tρ+∇· (ρv) = 0. If we define the slip velocities ui := vi−v0 and
the factor λi := ρiφi/ρ for i = 1, . . . , N , then the solids mass balance equations can be rewritten as

∂tφj +∇ ·
(
φj

(
uj + v −

N∑
l=1

λlul

))
= 0, j = 1, . . . , N.

The governing model in final form is

∂t(ρjφj) +∇ · (ρjφjvj) = 0, j = 1, . . . , N,

ρj(∂t(φjvj) +∇ · (φjvj ⊗ vj)) = ∇ · T E
j − φj∇p− φjρgk, j = 1, . . . , N, (3.7)

∂tρ+∇ · (ρv) = 0,

where

vj = v + ṽMLB
j (Φ)ez, ṽMLB

j (Φ) := µV (φ)

[
δj(ρ̄j − ρ̄TΦ)−

N∑
l=1

λlδlφl(ρ̄l − ρ̄TΦ)

]
.

Summing up from 0 to N the equations (3.7) we have

∂t

(
N∑
j=0

ρjφjvj

)
+∇ ·

(
N∑
j=0

ρjφjvj ⊗ vj
)

= ∇ · T − ρgk,

where the stress tensor of the mixture is given by

T =

N∑
j=0

Tj = −pI + T E.

This model forms the basis of a multilayer shallow water formulation that is discussed in Sec-
tion 3.11.

3.3. Hyperbolicity and characteristic schemes. It is possible to analyze the hyperbolicity for
(BSM) and a wide class of models of the settling velocities vi (including the MLB model) by the
approach of the so-called secular equation [86], see [63, 77, 87], where we recall that the system of
conservation laws

∂tΦ + ∂xf(Φ) = 0 (3.8)

is called hyperbolic at a state Φ = Φ0 if at that state, the eigenvalues of the flux Jacobian

Jf (Φ) := (∂fi/∂φj)1≤i,j≤N

are all real, and strictly hyperbolic if these are, moreover, pairwise distinct. For polydisperse sed-
imentation models, a particular result of the hyperbolicity analysis states that under determined
conditions the eigenvalues of Jf (Φ), which are inaccessible in closed form, interlace with the given
phase velocities vi. This interlacing property is the basis of characteristic-wise (spectral, as opposed
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to component-wise) high-resolution numerical schemes for the approximation of discontinuous so-
lutions of (BSM) (see [78]). It particular it has turned out that spectral weighted essentially non-
oscillatory schemes (WENO schemes; see [88–91]) are more accurate, and mostly more efficient,
than their (easier to implement) component-wise (COMP) counterparts. Substantial further im-
provements of efficiency are possible by adaptive techiques, for instance Adaptive Mesh Refinement
(AMR) [96].

In the context of polydisperse sedimentation, the hyperbolicity of (3.8) is related to the stability
of the separation of a polydisperse mixture, as is detailed in [64, 92]. Roughly speaking, stability
in this context means that an initially homogeneous mixture of a given initial composition Φ0

segregates under the formation of horizontal discontinuities and vertical gradients, and that blobs,
fingers, and other structures related to instable separation do not occur. A linear stability analysis
applied to (3.8) reveals that these phenomena are not amplified when Jf (Φ0) has real eigenvalues
only, that is (3.8) is hyperbolic at Φ0. Since on the other hand, instabilities such as blobs and fingers
have been observed for bidisperse mixtures (N = 2) only when particles with different densities are
involved (ρ1 6= ρ2), one should expect that a sound mathematical model should be be hyperbolic
for equal-density particles, arbitrary N and δN � 1. This was proved in [30] for the MLB model
(precisely, for the version (3.5), (BSM)).

3.4. Secular equation and interlacing property. In many cases, one may exploit the system-
atic algebraic construction of the velocity functions vi for the hyperbolicity analysis as follows.
Many models (proposed choices of vi(Φ)) can be written as

vi = vi(p1, . . . , pm), pl = pl(Φ), m� N,

i.e., the velocity vi of species i does not depend on each of the N components φ1, . . . , φN of Φ
individually, but rather on a small number m� N of functions p1(Φ), . . . , pm(Φ). One then obtains
that Jf (Φ) is a rank-m perturbation of the diagonal matrix D := diag(v1, . . . , vN ). Precisely, one
can write

Jf = D +BAT,

{
B := (Bil) = (φi∂vi/∂pl),

A := (Ajl) = (∂pl/∂φj),

1 ≤ i, j ≤ N,
1 ≤ l ≤ m.

The following theorem indicates how this stucture can be exploited to facilitate the location of
eigenvalues.

Theorem 3.1 (The secular equation [86]). A number λ 6∈ {v1, . . . , vN} is an eigenvalue of the
matrix D +BAT if and only if R(λ) = 0 (the “secular equation”), where we define

R(λ) := det
[
I +AT(D − λI)−1B

]
= 1 +

N∑
i=1

γi
vi − λ

,

γi :=

min{N,m}∑
r=1

∑
i∈I∈SN

r ,J∈Sm
r

detAI,J detBI,J∏
l∈I,l 6=i(vl − vi)

,

where SNr is the set of all subsets of {1, . . . , N} with r elements, and Smr is defined analogously.

From Theorem 3.1 one may deduce the following result.

Corollary 3.1 (Interlacing property). If γi · γj > 0 for all i, j, then D +BAT is diagonalizable

with real eigenvalues λ1, . . . , λN . Let γ̃ :=
∑N

i=1 γi. Then

M1 := vN + γ̃ < λN < vN < λN−1 < . . . < λ1 < v1,
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vN < λN < vN−1 < λN−1 < . . . < v1 < λ1 < M2 := v1 + γ̃.

One may easily verify that the MLB model for equal-density particles, as described by (3.5), is
a case of m = 2 with γi < 0 follows easily; thus, in this case (BSM) is strictly hyperbolic for all
Φ > 0. The eigenvalues satisfy the interlacing property. On the other hand, for the models by
Batchelor and Wen [93], Davis and Gecol [94] and others one can prove definite sign of γi only if
δN > δmin,model(δ, φmax) > 0, that is for a finite range of particle size ratios. For a given eigenvalue
λ 6∈ {v1, . . . , vN}, the eigenvectors can be calculated efficiently when the interlacing property is in
effect.

3.5. SPEC-INT and COMP-GLF numerical schemes. We now consider the numerical ap-
proximation of discontinuous solutions of (BSM). A conservative, fully discrete scheme for the
computation of Φn

i ≈ Φ(xi = (i+ 1
2)∆x, tn = n∆t) can be written as

Φn+1
i = Φn

i −
∆t

∆x

(
f̂ i+1/2 − f̂ i−1/2

)
,

f̂ i+1/2 = f̂
(
Φn
i−s+1, . . . ,Φ

n
i+s

)
, i = 0, . . . ,M − 1; f̂−1/2 = f̂M−1/2 = 0,

where f̂ i+1/2 is the numerical flux vector associated with the cell interface xi+1. In general, the
basic idea of construction of numerical schemes consists in applying an ODE solver (in our case, a
third-order Kunge-Kutta TVD method) to the spatially semi-discretized equations [95].

To compute f̂ i+1/2, one may use the eigenstructure of Jf (Φi+1/2), where Φi+1/2 := 1
2(Φi + Φi+1),

given by the right and left eigenvectors:

Ri+1/2 = [ri+1/2,1, . . . , ri+1/2,N ],
(
R−1
i+1/2

)T
= [li+1/2,1, . . . , li+1/2,N ].

From a local flux splitting

f−,k + f+,k = f , ±λk(Jf±,k(Φ)) ≥ 0, Φ ≈ Φi+1/2, k = 1, . . . , N,

we can define g±,kj := lTi+1/2,k · f±,k(Φj), and use upwind-biased reconstructions R± (e.g., the

WENO method), to calculate

ĝi+1/2,k = R+
(
g+,k
i−s+1, . . . , g

+,k
i+s−1;xi+1/2

)
+R−

(
g−,ki−s+2, . . . , g

−,k
i−s ;xi+1/2

)
,

f̂ i+1/2 = Ri+1/2ĝi+1/2 =
n∑
k=1

ĝi+1/2,kri+1/2,k.

The component-wise global Lax-Friedrichs (COMP-GLF) scheme is based on the alternative of
setting Ri+1/2 = IN , where IN is the N ×N identity matrix, and utilizing a global flux splitting
f− + f+ = f , where ±λk(Jf±(Φ)) ≥ 0 for all k. This results in the choice

g±,kj = eT
k f
±(Φj) = f±k (Φj),

which leads to a high-order extension of the Lax-Fiedrichs scheme.
A more sophisticated scheme is based on spectral properties of the flux Jacobian in conjunction

with the interlacing property (Corollary 3.1), to which we refer as SPEC-INT scheme. To outline it,
we assume that Si+1/2 is the segment joining states Φi and Φi+1. If λk(Jf (Φ)) > 0 (resp., < 0) on
Si+1/2 then we upwind (no need for flux splitting). However, if λk(Jf (Φ)) changes sign on Si+1/2,
then we use a local Lax-Friedrichs flux splitting with numerical viscosity parameter αk:

f±,k(Φ) = f(Φ)± αkΦ, αk
!
≥ max

Φ∈Si+1/2

∣∣λk(Jf (Φ)
)∣∣.
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Figure 34. Example 1 (settling of a suspension of N = 4 solid species): reference
solution with M = Mref = 6400 at simulated times t = 50 s and t = 300 s [78].

The computation of this parameter depends decisively on the result of Corollary 3.1. While by
preliminary tests it had turned out that the amount of numerical viscosity is insufficient for the
usual choice

αk = max
{∣∣λk(Jf (Φi)

)∣∣, ∣∣λk(Jf (Φi+1)
)∣∣},

much better results in terms of resolution an efficiency have been obtained by exploiting the in-
terlacing property stated in the corollary. For example, for the MLB model with equal-density
particles the interlacing property provides the easily computable bound

max
Φ∈Si+1/2

|λk(Φ)| ≤ αk := max

{
max

Φ∈Si+1/2

∣∣vk(Φ)
∣∣, max

Φ∈Si+1/2

∣∣vk+1(Φ)
∣∣}.

This choice of α1, . . . , αN defines the scheme SPEC-INT.

3.6. Numerical experiments. We here present some selected numerical examples from [78] and
[96]. We refer to these papers for a detailed presentation and broader discussion. In Example 1,
we consider a suspension of N = 4 equal-density particle species with the normalized sizes d1 = 1,
d2 = 0.8, d3 = 0.6, and d4 = 0.4, and set φmax = 0.6. The initial composition is φ0

i = 0.05 for
i = 1, . . . , 4. Numerical results are shown in Figures 34 and 35.

Example 2 is motivated by data from [68] and concerns the settling of a suspenson with N = 7
solid species (size classes). We consider the parameters φmax = 0.6 and the hindered settling factor
V (φ) = (1 − φ)3. The initial conditions φ0

i , real particle sizes di, and normalized squared particle
sizes δi are given here:

i 1 2 3 4 5 6 7
φ0
i [10−2] 0.2365 1.1039 3.5668 3.8776 6.0436 10.890 4.2718

di [10−5 m] 290 250 210 170 130 90 50
δi 1.0000 0.7432 0.5244 0.3436 0.2010 0.0963 0.0297

We use Adaptive Mesh Refinement (AMR) to locally enhance resolution and efficiency. The final
scheme is named SPEC-INT-AMR. Numerical results from [96] are shown in Figures 36 and 37.
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Figure 35. Example 1 (settling of a suspension of N = 4 solid species): solution
for φ3 and φ4 with M = 400 at simulated time t = 50 s [78].
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Figure 36. Example 2 (settling of a suspension of N = 7 solid species): numerical
solutionx at t = 400 s and t = 2500 s obtained by SPEC-INT-AMR with L+ 1 = 6
levels; the coarsest grid has 50 subintervals [96].

3.7. Implicit-explicit (IMEX) methods for a diffusively corrected model. The diffusively
corrected model (including the effect of sediment compressibility) leads to a strongly degenerate
hyperbolic-parabolic system of PDEs (DCM). Explicit schemes applied to the model require the
strong stability step size constraint

α
∆t

∆x
+ β

∆t

∆x2
≤ 1,

which is avoided by so-called implicit-explicit Runge-Kutta (IMEX-RK) discretizations that are
implicit for diffusive term and explicit for the convective term, both of the semi-discrete (spatially
discretized) formulation. In [97] the authors developed a new nonlinear solver for the regularization
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Figure 37. Example 2 (settling of a suspension of N = 7 solid species): approx-
imate L1 errors versus CPU time for SPEC-INT-AMR and COMP-GLF-AMR at
t = 2500 s. The referece solution was computed with SPEC-INT on a fixed grid
with 12800 subintervals [96].

of the algebraic systems arising with IMEX methods. Alternatively, one can design linearly implicit
(less accurate, but easier to implement) IMEX-RK schemes to solve the problem [84,85].

3.8. Spatial discretization. The spatial discretization of (DCM) is achieved through discretizing
∂xf(Φ) discretized by 1

∆x(∆−f)(Φ), where the numerical flux is a fifth-order WENO reconstruc-
tions of characteristic fluxes (WENO-SPEC or SPEC-INT, see Section 3.5 and [78]). Moreover,
∂x(B(Φ)∂xΦ) is discretized by a standard second-order scheme, i.e.,

∂x
(
B(Φ)∂xΦ

)
(xi, t) ≈

1

∆x2

(
Bi−1/2Φi−1 − (Bi−1/2 +Bi+1/2)Φi +Bi+1/2Φi+1

)
(t),

Bi+1/2 :=
1

2

(
B(Φi) +B(Φi+1)

)
, Φi(t) ≈ Φ(xi, t) ∈ RN ;

Modifications to these formulas apply for i = 1 and i = M to account for boundary conditions.
BCs. For Φ = (Φ1, . . . ,ΦM )T ∈ RMN , we can now define the M ×M block tridiagonal matrix
B = B(Φ), with blocks of size N ×N , as Bi,i = −(Bi−1/2 +Bi+1/2), Bi,i−1 = Bi−1/2, etc.

3.9. Time discretization. Within Semi-implicit IMEX-RK schemes, the convective term is treated
explicitly, and the diffusive term is treated implicitly. One combines explicit Runge-Kutta (ERK)
scheme with a diagonally implicit Runge-Kutta (DIRK) scheme to handle the former and the latter,
respectively. Both schemes are assumed to be given by the usual Butcher arrays, that is

c̃ Ã

B̃
T

= s-stage ERK,
c A

BT
= s-stage DIRK.
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A common example is the second-order scheme IMEX-SSP2(3,3,2) (see [98]):

c̃ Ã

B̃
T =

0 0 0 0

1
2

1
2 0 0

1 1
2

1
2 0

1
3

1
3

1
3

,
c A

BT
=

1
4

1
4 0 0

1
4 0 1

4 0

1 1
3

1
3

1
3

1
3

1
3

1
3

.

Nonlinearly implicit IMEX-RK (NI-IMEX-RK) methods (as studied in [97]) are based on the
semidiscrete formulation rewritten as follows:

dΦ

dt
= C(Φ) +D(Φ),

C(Φ) := − 1

∆x
(∆−f)(Φ), D(Φ) :=

1

∆x2
B(Φ)Φ,

where C(Φ) and D(Φ) represent the spatial discretizations of the convective and diffusive parts of
(DCM), respectively. For this setting the simplest IMEX scheme is

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn+1)Φn+1,

where Φn ≈ Φ(tn). For general pairs of RK schemes, the computations of a NI-IMEX-RK scheme
necessary to advance an Φn from time tn to tn+1 = tn + ∆t are given in the following algorithm:

Input: approximate solution vector Φn for t = tn
do i = 1, . . . , s

solve for Φ(i) the nonlinear equation

Φ(i) = Φn + ∆t

(
i−1∑
j=1

aijKj + aiiD
(
Φ(i)

)
+

i−1∑
j=1

ãijK̃j

)
Ki ← D(Φ(i)), K̃i ← C(Φ(i))

enddo

Φn+1 ← Φn + ∆t
s∑
j=1

bjKj + ∆t
s∑
j=1

b̃jK̃j

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.

This algorithm [99] requires in each step solving a nonlinear system of the type

Ψi(u) := u− aii∆tD
(
u
)
− ri = 0, i = 1, . . . , s,

for u = Φ(i) ∈ RMN , where

ri = Φn + ∆t

(
i−1∑
j=1

aijKj +

i−1∑
j=1

ãijK̃j

)
.

To apply the standard Newton-Raphson iterative method, one must require that the functionB or B
is at least of class C1. However, our degenerate model does not naturally satisfy this assumption.
To this end, we devised NI-IMEX-RK schemes [97] that are based on replacing B by smooth
approximation Bε (and B by Bε), where Bε → B and Bε → B as ε → 0. One then applies
a nonlinear solver combined with smoothing and a damped Newton-Raphson method with line
search strategy (see [97] for details).
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The necesessity to solve nonlinear algebraic systems within each IMEX step circumvented by
linearly implicit Runge-Kutta methods (LI-IMEX-RK methods). To formulate them, we start
from the semidiscrete formulation in the form

dΦ

dt
= C(Φ) +D(Φ,Φ),

C(Φ) := − 1

∆x
(∆−f)(Φ), D(Φ∗,Φ) :=

1

∆x2
B(Φ∗)Φ,

where we distinguish between stiff and nonstiff dependence on Φ in the spatially discretized form
D(Φ∗,Φ) of the diffusion term. We write

dΦ

dt
= C(Φ∗) +D(Φ∗,Φ) =: K(Φ∗,Φ),

where Φ∗ is treated explicitly as argument of f and B, while Φ is implicit in the term to which B
is applied. The simplest first-order LI-IMEX-RK scheme is then given by

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn)Φn+1.

In the general case, a linearly implicit IMEX-RK scheme is defined by the following algorithm:

Input: approximate solution vector Φn for t = tn

do i = 1, . . . , s

Φ∗(i) ← Φn + ∆t
i−1∑
j=1

ãijKj , Φ̂
(i) ← Φn + ∆t

i−1∑
j=1

aijKj

solve for Ki the linear equation

Ki = C
(
Φ∗(i)

)
+ 1

∆x2
B
(
Φ∗(i)

)(
Φ̂

(i)
+ ∆taiiKi

)
, (∗)

enddo

Φn+1 ← Φn + ∆t
s∑
j=1

bjKj (∗∗)

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.

The property Φ∗,n+1 = Φn+1 is guaranteed for bi = b̃i for i = 1, . . . , s [100].

3.10. Numerical experiments. We compare numerical results with those obtained from the well-
known explicit Kurganov-Tadmor (KT) scheme [101]. We set ∆x = L/M and in each iteration,
the time step ∆t is determined by

∆t

∆x
max

1≤j≤M
%
(
Jf
(
Φn
j

))
+

∆t

2∆x2
max

1≤j≤M
%
(
B
(
Φn
j

))
= Ccfl1

for the KT scheme and

∆t

∆x
max

1≤j≤M
%
(
Jf
(
Φn
j

))
= Ccfl2

for the semi-implicit schemes, where %(·) is the spectral radius. In the numerical examples we
choose Ccfl∗ as the largest multiple of 0.05 that yields oscillation-free numerical solutions. In all
cases, the reference solution for numerical tests is computed by the KT scheme with Mref = 25600.
The numerical examples are based on the results of [84,85].

In Example 3 we consider N = 3 and focus on the comparison of LI- and NI-IMEX-SSP2
schemes, based on using the model parameters φmax = 0.66, nRZ = 4.7, σ0 = 180 Pa, φc = 0.2,
k = 2, µf = 10−3 Pa s, d = 1.19 × 10−5 m, ρs = 1800 kg/m3, and g = 9.81 m/s2. The initial
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Figure 38. Example 3 (settling of a tridisperse suspension (N = 3), including the
effect of sediment compressibility): (left) numerical results by LI-IMEX-SSP2 at
simulated time T = 4000 s, (right) enlarged view [84,85].
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Figure 39. Example 3 (settling of a tridisperse suspension (N = 3), including the
effect of sediment compressibility): numerical solution at simulated time T = 4000 s,
efficiency plot based on numerical results for ∆x = 1/M with M = 100, 200, 400,
800 and 1600 [84,85].

concentration is Φ0 = (0.04, 0.04, 0.04)T in a vessel of height L = 1 m with δ = (1, 0.5, 0.25)T. For
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Figure 40. Example 4: (settling of a tridisperse suspension (N = 3), including the
effect of sediment compressibility, smooth initial datum): numerical results produced
by LI-IMEX-SSP2-reg with M = 1600 at simulated times (left) T = 20 s and (right)
T = 500 s [84].

the nonlinearly implicit scheme, NI-IMEX-SSP2, the regularization is achieved by utilizing

σe(φ; ε) = σe(φ) exp
(
−ε/(φ− φc)

2
)
, ε > 0,

where ε decreases gradually from ε0 = 10−4 to εmin = 10−6, tol = 10−8. The schemes LI-IMEX-
SSP2 and KT do not include regularization of the diffusive term. For the schemes NI-IMEX-SSP2
and LI-IMEX-SSP2, we set Ccfl2 = 0.7, and for KT, Ccfl1 = 0.25. The scheme LI-IMEX-SSP2-reg
consists in applying the scheme LI-IMEX-SSP2 to the regularized diffusion term with εmin = 10−6.

In Example 4 we again consider N = 3 and the parameters d1 = 1.0, d2 = 0.8 and d3 = 0.7,
with a smooth initial concentration profile φi(x) = 0.12 exp(−200(x−0.5)2). The numerical results
produced by the scheme LI-IMEX-SSP2-reg withM = 1600 are taken at T = 20 s (when the solution
profiles are still smooths) and T = 500 s (after discontinuities have formed). The corresponding
numerical errors are given here [84]:

T = 20 s T = 500 s

based on reference soln. based on interpolation based on reference soln.

M etot
M (T ) θM (T ) θ̂M (T ) ẽtot

M (T ) etot
M (T ) θM (T )

50 1.38e-04 0.14 -0.33 8.41e-05 2.27e-03 1.59
100 1.25e-04 1.45 1.48 1.06e-04 7.49e-04 0.95
200 4.58e-05 1.80 1.68 3.80e-05 3.86e-04 1.11
400 1.30e-05 1.88 1.76 1.19e-05 1.78e-04 0.91
800 3.54e-06 1.87 1.87 3.52e-06 9.49e-05 1.05
1600 9.66e-07 2.00 1.98 9.63e-07 4.56e-05 1.01
3200 2.40e-07 2.06 — 2.44e-07 2.26e-05 1.01
6400 5.73e-08 — — — 1.12e-05 —
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Figure 41. Multilayer approach for one horizontal and one vertical space dimension
(coordinates x and z, respectively) [103].

3.11. A multilayer shallow water system of polydisperse sedimentation. Models for the
settling of a polydisperse suspensions in two or three space dimensions are usually given by (3.1)–
(3.3) or a similar coupled transport-flow problem. Roughly speaking, such problems are defined
by a transport equation (for the solids concentrations) strongly coupled to a version of the Navier-
Stokes equation for the mixture velocity and the pressure. Since the computational effort to solve
these multi-dimensional coupled problems is considerable, one seeks to define easier-to-solve lower-
dimensional models. The well-known Saint-Venant (shallow water) approach is based on a vertically
integrated version of the flow equations that can be applied when vertical fluctuations of variables
are negligible.

To handle mostly horizontal flows combined with polydisperse sedimentation, a new compu-
tational multilayer Saint-Venant approach was developed [102] and recently modified [103]. In
general, a multilayer Saint-Venant model is less expensive than the full 3D model from the compu-
tational point of view, but still keeps information on the vertical distribution of the mixture. Such
an approach (as opposed to a standard single-layer approach) is appropriate in the presence large
friction coefficients, significant water depth, or wind effects [104–106]. This approach results in a
number of coupled Saint-Venant system, one for each layer [107], see Figure 41.

The steps of the formulation of the final solvable multiplayer model are fairly complicated [102].
They include integrating the balance equations for the solid and liquid phases over each layer,
neglecting vertical fluctuations of horizontal velocities and concentrations inside each layer, and
assuming that the pressure is hydrostatic. We assume that the suspension body is subdivided into
M layers. Furthermore, if h = h(x, t) denotes the total height of the suspension body at horizontal
position x at time t, then we assume that the height of layer α, α = 1, . . . ,M , is a fixed fraction lα
of h, such that hα = lαh for lα > 0, α = 1, . . . ,M , with l1 + · · · + lM = 1. We assume that the
bottom and surface heights are zB := z1/2 and zS := zM+1/2, such that h = zS−zB = h1 + · · ·+hM .
(again, see Figure 41). The governing model can then be written as follows, where α = 1, . . . ,M
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counts the layer under consideration and j = 1, . . . , N indicates the solid particle species:

∂trj,α + ∂x

(
rj,αqα
mα

)
=

1

lα

(
φ̃j,α+1/2Gα+1/2 − φ̃j,α−1/2Gα−1/2

)
− ρj
lα

(f̃j,α+1/2 − f̃j,α−1/2), j = 1, . . . , N,

∂tqα + ∂x

(
q2
α

mα
+ h

(
pS +

g

2
lαmα + g

M∑
β=α+1

lβmβ

))

=

(
pS + g

M∑
β=α+1

lβmβ

)
∂xh− gmα∂xzb − gmαlα−1∂xh+

1

lα

(
ũα+1/2Gα+1/2 − ũα−1/2Gα−1/2

)
,

∂tm̄+ ∂x

(
M∑
β=1

lβqβ

)
= GM+1/2 −G1/2, m̄ := h

M∑
β=1

ρ̄βlβ =

M∑
β=1

lβmβ.

Here ρ1, . . . , ρN are the densities of the solid species, ρ0 is the density of the fluid, g is the acceler-
ation of gravity, φj,α denotes the volume fraction of species j in layer α, rj,α := ρjφj,αh, uα is the
horizontal velocity of the mixture in layer α, ρ̄α := ρ0φ0,α + ρ1φ1,α + · · ·+ ρNφN,α is the density of
layer α, qα := ρ̄αhuα, and mα := ρ̄αh. Moreover,

ũα+1/2 :=
1

2

(
qα+1

mα+1
+

qα
mα

)
, φ̃j,α+1/2 :=

1

2

(
rj,α+1

mα+1
+
rj,α
mα

)
,

and Gj,α+1/2 are intra-layer mass fluxes defined inter alia by the modified MLB velocities. The
model that is eventually solved can be written as a balance equation involving non-conservative
products,

∂tw + ∂xF(w) = S(w, ∂xw) + G(w, ∂xw),

w = (m̄, q1, . . . , qM , r1,1, . . . , rN,1, . . . , . . . , r1,M , . . . , rN,M )T,

for whose numerical solution specialized numerical methods are available.

3.12. Numerical experiments. In the present numerical simulation we have used the global con-
stants g = 9.8 m/s2 (acceleration of gravity), φmax = 0.68, and we have employed the Richardson-
Zaki hindered settling factor with nRZ = 4.7, viscosity and density of the pure fluid are µ0 =
0.02416 Pa s and ρ0 = 1208 kg/m3, respectively, and we are assumed that the all species have the
same density ρ1 = ρ2 = ρ3 = 2790 kg/m3.

The (horizontal) x-interval [0, L] has been discretized into C subintervals [xi−1/2, xi+1/2] = [(i−
1)∆x, i∆x] of length ∆x = L/C, centered at xi = (i − 1/2)∆x, i = 1, . . . , C, and in the vertical
direction we have used M = 10 layers. Finally, we use

∆t

∆x
max

1≤i≤C
max{|SR,i+1/2|, |SL,i+1/2|} = Ccfl,

as Ccfl condition, where SR,i+1/2 and SL,i+1/2 are the bounds of the eigenvalues. Here we have
considered Ccfl = 0.5.

In this numerical test we simulate polidisperse sedimentation process over a horizontal channel
with a bump of length L = 1 m. We use N = 3 solids species dispersed in a viscous fluid with
diameters d1 = 4.96 × 10−4 m, d2 = 1.25 × 10−4 m, d3 = 1.0 × 10−4 m respectively. The bottom
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(a) Concentration by layers φ1,α, t = 0 s (b) Concentration by layers φ1,α, t = 20 s
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(c) Concentration by layers φ1,α, t = 50 s (d) Concentration by layers φ1,α, t = 100 s
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(e) Concentration by layers φ1,α, t = 500 s (f) Concentration by layers φ1,α, t = 1000 s
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Figure 42. Example 5: Concentration of φ1 by color in a domain with a bump,
η(x) = zB(x) + h(x) m, at simulated times T = 0 s, 20 s, 50 s, 100 s, 500 s and
T = 1000 s.

elevation is given by zB(x) = 0.2 exp(−40(x − 0.5)2) m for x ∈ [0, L], the initial condition for the
height is h(t = 0) = 0.3− zB, and for the concentration of each species

φi,α =
1

M

M∑
β=1

φi,β(0, x) for all i = 1, . . . , 3, uα(0, x) = 0 for all α = 1, . . . ,M and all x ∈ [0, L],

with
∑M

β=1 φ1,β(0, x) = 0.05,
∑M

β=1 φ2,β(0, x) = 0.025,
∑M

β=1 φ3,β(0, x) = 0.01. The sediment
concentrations are vertically uniformly distributed at each point x. We use a closed basin as
boundary condition.

In Figures 42–44 we can see the concentrations of the each solid species φ1, φ2, φ3 respectively.
The behavior of the particles of the different species is what we expected, the bigger particles are
deposited faster than other particles over the bottom, in this case to both sides of the bump, where
we can find high concentration of species 1 (φ1) in short time, as we can see in Figures 42 (a)–(f).
The others smaller particles initially remain in suspension, but at larger simulated times these
particles begin to settle and position itself in places where the concentration of species 1 is small
(see Figures 43 and44). Finally the global behavior of all particles dispersed in the fluid (the sum of
the concentrations of the all species) and the velocity field is displayed in Figure 45, in this picture,
we can see how these are deposited on the bottom in both side of the bump and also as some
particles of species 2 and species 3 are kept in suspension in small concentration yet. In the same
figure we show the velocity field of the mixture and its magnitude, which is a consequence of the
particles movement. Recirculations appear to both sides of the bump too. In the first times high
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(a) Concentration by layers φ2,α, t = 0 s (b) Concentration by layers φ2,α, t = 20 s
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(c) Concentration by layers φ2,α, t = 50 s (d) Concentration by layers φ2,α, t = 100 s
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(e) Concentration by layers φ2,α, t = 500 s (f) Concentration by layers φ2,α, t = 1000 s
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Figure 43. Example 6: Concentration of φ2 by color in a domain with a bump,
η(x) = zB(x) + h(x) m, at simulated times T = 0 s, 20 s, 50 s, 100 s, 500 s and
T = 1000 s.

velocities appear avoiding that some particles settle rapidly. At larger times the velocity decreases
and the particles settle.

3.13. Conclusions on this section. To conclude this contribution, we mention that the issue
of hyperbolicity, outlined in Section 3.3, is still an open problem for some important models of
polydisperse sedimentation, including the model by Patwardhan and Tien [108] which is supported
by some experimental evidence. On the other hand, the schemes developed for one-dimensional
sedimentation can also be applied to other models, for instance to mult-class extensions of the
well-known Lighthill-Whitham-Richards kinematic traffic model (see [83, 109]). The latter models
form a case of the theory of Section 3.3 for m = 1, and admit a separable entropy so that even
entropy-stable schemes can be defined [110]. However, no entropy function is known for polydisperse
sedimentation models shown here. The mathematical theory is still incomplete.

No well-posedness theory is available for strongly degenerate convection-diffusion systems of the
type (DCM). In fact, the IMEX-RK approach is justified by convergence of the scheme to the same
solutions that are approximate by the KT scheme.

We metion that the multilayer shallow water system for polydisperse sedimentation is currently
being extended to two horizontal space dimensions. The current model should be furthermore be
refined by mechanisms of sediment erosion and variation of topography due to sediment deposit.
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(a) Concentration by layers φ3,α, t = 0 s (b) Concentration by layers φ3,α, t = 20 s
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(c) Concentration by layers φ3,α, t = 50 s (d) Concentration by layers φ3,α, t = 100 s
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(e) Concentration by layers φ3,α, t = 500 s (f) Concentration by layers φ3,α, t = 1000 s
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Figure 44. Example 7: Concentration of φ3 by color in a domain with a bump,
η(x) = zB(x) + h(x) m, at simulated times T = 0 s, 20 s, 50 s, 100 s, 500 s and
T = 1000 s.
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[25] A. Coronel, F. James, and M. Sepúlveda, Numerical identification of parameters for a model of sedimentation
processes, Inverse Problems 19 (2003), 951–972.
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